Tracing the origins of permitted emission lines in RU Lupi down to AU scales

Nov, 2007
11 pages
Published in:
  • Astron.Astrophys. 480 (2008) 421
e-Print:

Citations per year

20092010201120122013102
Abstract: (arXiv)
Most of the observed emission lines and continuum excess from young accreting low mass stars (Classical T Tauri stars -- CTTSs) take place in the star-disk or inner disk region. These regions have a complex emission topology still largely unknown. In this paper the magnetospheric accretion and inner wind contributions to the observed permitted He and H near infrared (NIR) lines of the bright southern CTTS RU Lupi are investigated for the first time. Previous optical observations of RU Lupi showed a large H-alpha profile, due to the emission from a wind in the line wings, and a micro-jet detected in forbidden lines. We extend this analysis to NIR lines through seeing-limited high spectral resolution spectra taken with VLT/ISAAC, and adaptive optics (AO) aided narrow-band imaging and low spectral resolution spectroscopy with VLT/NACO. Using spectro-astrometric analysis we investigate the presence of extended emission down to very low spatial scales (a few AU). The HeI 10830 line presents a P Cygni profile whose absorption feature indicates the presence of an inner stellar wind. Moreover the spectro-astrometric analysis evidences the presence of an extended emission superimposed to the absorption feature and likely coming from the micro-jet detected in the optical. On the contrary, the origin of the Hydrogen Paschen and Brackett lines is difficult to address. We tried tentatively to explain the observed line profiles and flux ratios with both accretion and wind models showing the limits of both approaches. The lack of spectro-astrometric signal indicates that the HI emission is either compact or symmetric. Our analysis confirms the sensitivity of the HeI line to the presence of faint extended emission regions in the close proximity of the star.
  • STARS WINDS
  • STARS OUTFLOWS
  • ACCRETION DISKS
  • LINE FORMATION
  • TECHNIQUES HIGH-ANGULAR RESOLUTION