Merger Histories of Galaxy Halos and Implications for Disk Survival

Nov, 2007
14 pages
Published in:
  • Astrophys.J. 683 (2008) 597-610
e-Print:
Report number:
  • SLAC-PUB-13235

Citations per year

200720112015201920230102030
Abstract: (arXiv)
We study the merger histories of galaxy dark matter halos using a high resolution LCDM N-body simulation. Our merger trees follow ~17,000 halos with masses M_0 = (10^11--10^13) Msun at z=0 and track accretion events involving objects as small as m = 10^10 Msun. We find that mass assembly is remarkably self-similar in m/M_0, and dominated by mergers that are ~10% of the final halo mass. While very large mergers, m > 0.4 M_0, are quite rare, sizeable accretion events, m ~ 0.1 M_0, are common. Over the last 10 Gyr, an overwhelming majority (~95%) of Milky Way-sized halos with M_0 = 10^12 Msun have accreted at least one object with greater total mass than the Milky Way disk (m > 5x10^10 Msun), and approximately 70% have accreted an object with more than twice that mass (m > 10^11 Msun). Our results raise serious concerns about the survival of thin-disk dominated galaxies within the current paradigm for galaxy formation in a CDM universe. In order to achieve a ~70% disk-dominated fraction in Milky Way-sized CDM halos, mergers involving m ~ 2x10^11 Msun objects must not destroy disks. Considering that most thick disks and bulges contain old stellar populations, the situation is even more restrictive: these mergers must not heat disks or drive gas into their centers to create young bulges.
Loading ...