Theory of the conformally invariant mass

1972
23 pages
Published in:
  • Annals Phys. 71 (1972) 519-541

Citations per year

197319861999201220250123456
Abstract: (Elsevier)
By interpreting the conformal transformations as space-time-dependent change of units and introducing the concept of the conformally invariant mass and charge, we develop new conformally invariant Maxwell equations with source terms and equations of motion for massive particles. Although the usual equations of motion with mass terms break the conformal symmetry, it is shown that the Minkowski space is not the most general framework to describe physical processes and there exists a wider consistent dynamics in which conformal invariance is exact. New results also include the general transformation laws of the electromagnetic fields, of currents and force densities. The theory leads naturally to an affine connection and to the 21-parameter inhomogeneous conformal group, ISO(4, 2).
  • invariance: conformal
  • mass
  • electromagnetic
  • relativity theory
  • symmetry
  • group theory
  • [1]

    De Sitter and Conformal Groups and Their Physical Applications

    • A.O. Barut
      ,
    • W.E. Brittin
  • [1]
    See also
    • P. Carruthers
      • Phys.Lett.Rep. 1 (1971) See also
  • [1]
    • R.I. Ingraham
      • Proc.Nat.Acad.Sci. 41 (1955) 165
  • [2]
    and references therein
    • H.A. Kastrup
      • Ann.Physik 7 (1962) and references therein
  • [3]
    • P.A.M. Dirac
      • Annals Math. 37 (1936) 657
  • [4]
    • H. Bateman
      • Proc.London Math.Soc. 8 (1910) 77
  • [4]
    • E. Cunningham
      • Proc.London Math.Soc. 8 (1910) 77
  • [5]
    • D.J. Gross
      ,
    • J. Wess
      • Phys.Rev. 2 (1970) 753
  • [5]
    • M. Flato
      ,
    • J. Simon
      ,
    • D. Sternheimer
      • Annals Phys. 61 (1970) 78
  • [6]
    Concerning the Weyl space, the reader may also consult
    • T. Fulton
      ,
    • F. Rohrlich
      ,
    • L. Witten
      • Rev.Mod.Phys. 34 (1962) 412
  • [6]
    • T. Fulton
      ,
    • F. Rohrlich
      ,
    • L. Witten
      • Nuovo Cim. 26 (1962) 652
  • [6]