Finite-Size Scaling in Extreme Statistics

May 30, 2008
4 pages
Published in:
  • Phys.Rev.Lett. 100 (2008) 210601
e-Print:

Citations per year

2009201120132015201710
Abstract: (APS)
We study the deviations from the limit distributions in extreme value statistics arising due to the finite size (FS) of data sets. A renormalization method is introduced for the case of independent, identically distributed (iid) variables, showing that the iid universality classes are subdivided according to the exponent of the FS convergence, which determines the leading order FS shape correction function as well. It is found that, for the correlated systems of subcritical percolation and 1/fα stationary (α<1) noise, the iid shape correction compares favorably to simulations. Furthermore, for the strongly correlated regime (α>1) of 1/fα noise, the shape correction is obtained in terms of the limit distribution itself.
Note:
  • 4 pages, 3 figures
  • 05.40.-a
  • 05.45.Tp
  • 02.50.-r
      • NOONE 25 1287
      • J.Phys.A 30 7997
      • Phys.Rev. 68 056116
      • Phys.Rev.Lett. 92 225501
      • Phys.Rev.Lett. 85 5492
      • Phys.Rev. 73 056103
      • Phys.Rev.Lett. 100 044103
      • Phys.Rev. 62 1660
      • J.Statist.Phys. 122 671
      • Annals Math.Statist. 35 502
      • Proc.Cambridge Phil.Soc. 24 180
      • Annals Probab. 24 97
      • Phys.Rev. 65 046140
      • Phys.Rev. 76 041119
      • Phys.Rev. 75 021123
      • J.Statist.Phys. 119 777