A two-columns formalism for time-dependent modelling of stellar convection. I. Description of the method
Sep, 2008Citations per year
Abstract: (arXiv)
Despite all advances in multi-dimensional hydrodynamics, investigations of stellar evolution and stellar pulsations still depend on one-dimensional computations. The present work devises an alternative to the mixing length theory or turbulence models usually adopted for the modelling of convective transport in such studies. Assuming that the largest convective patterns generate the majority of convective transport, the convective velocity field is described using two parallel radial columns to represent up- and downstream flows. Horizontal exchange in the form of fluid flow and radiation over their connecting interface couples the two columns and allows a simple circulating motion. The main parameters of this convective description have a straightforward geometrical meaning, namely the diameter of the columns (corresponding to the size of the convective cells) and the ratio of cross section between up- and downdrafts. For this geometrical setup, the time-dependent solution of the equations of radiation hydrodynamics is computed from an implicit scheme which has the advantage of being not affected by the Courant-Friedrichs-Lewy time step limit. In order to demonstrate the approach, results for the example of convection zones in Cepheids are presented.References(42)
Figures(11)