Simultaneous Triggered Collapse of the Presolar Dense Cloud Core and Injection of Short-Lived Radioisotopes by a Supernova Shock Wave

Sep, 2008
12 pages
Published in:
  • Astrophys.J.Lett. 686 (2008) L119
e-Print:

Citations per year

2008201220162020202301234567
Abstract: (arXiv)
Cosmochemical evidence for the existence of short-lived radioisotopes (SLRI) such as 26^{26}Al and 60^{60}Fe at the time of the formation of primitive meteorites requires that these isotopes were synthesized in a massive star and then incorporated into chondrites within 106\sim 10^6 yr. A supernova shock wave has long been hypothesized to have transported the SLRI to the presolar dense cloud core, triggered cloud collapse, and injected the isotopes. Previous numerical calculations have shown that this scenario is plausible when the shock wave and dense cloud core are assumed to be isothermal at 10\sim 10 K, but not when compressional heating to 1000\sim 1000 K is assumed. We show here for the first time that when calculated with the FLASH2.5 adaptive mesh refinement (AMR) hydrodynamics code, a 20 km/sec shock wave can indeed trigger the collapse of a 1 MM_\odot cloud while simultaneously injecting shock wave isotopes into the collapsing cloud, provided that cooling by molecular species such as H2_2O, CO2_2, and H2_2 is included. These calculations imply that the supernova trigger hypothesis is the most likely mechanism for delivering the SLRI present during the formation of the solar system.