Exponents for the excluded volume problem as derived by the Wilson method

Feb, 1972
2 pages
Published in:
  • Phys.Lett.A 38 (1972) 339-340

Citations per year

1973198619992012202502468101214
Abstract: (Elsevier)
By an expansion to second order in ϵ = 4-d, we derive the mean square extension R 2 for a random, self excluding walk of N jumps on a d -dimensional lattice. The result is: R 2 = const. N 1.195 (for d = 3).
  • [1]
    Phys. Rev. Letters, to be published
    • K.G. Wilson
    • [2]
      • M. Fixman
        • J.Chem.Phys. 23 (1955) 1657
    • [2]
      • H. Yamakawa
        • J.Chem.Phys. 45 (1966) 1938
    • [3]
      • M. Fisher
        ,
      • B. Hiley
        • J.Chem.Phys. 34 (1961) 1253
    • [4]

      Principles of polymer chemistry

      • P.J. Flory
    • [5]
      • J. des Cloizeaux
        • J.de Phys. 31 (1970) 715