Fomalhaut's Debris Disk and Planet: Constraining the Mass of Fomalhaut b From Disk Morphology

Nov, 2008
17 pages
Published in:
  • Astrophys.J. 693 (2009) 734-749
e-Print:

Citations per year

20082011201420172019051015
Abstract: (arXiv)
Following the optical imaging of the exoplanet candidate Fomalhaut b (Fom b), we present a numerical model of how Fomalhaut's debris disk is gravitationally shaped by a single interior planet. The model is simple, adaptable to other debris disks, and can be extended to accommodate multiple planets. We find that to not disrupt the belt, Fom b must have a mass < 3 Jupiter masses. Previous mass constraints based on disk morphology rely on several oversimplifications. We explain why our constraint is more reliable. It is based on a global model of the disk that is not restricted to the planet's chaotic zone boundary. Moreover, we screen disk parent bodies for dynamical stability over the system age of 100 Myr, and model them separately from their dust grain progeny/ the latter's orbits are strongly affected by radiation pressure and their lifetimes are limited to 0.1 Myr by destructive grain-grain collisions. The single planet model predicts that planet and disk orbits be apsidally aligned. Preliminary analysis of Fom b's space velocity does not bear this out. The disagreement might be resolved by having additional perturbers in the Fomalhaut system, for which there is independent evidence from the star's anomalous Hipparcos acceleration. Our upper mass limit of 3 Jupiter masses for Fom b is not affected by these considerations. The belt contains at least 3 Earth masses of solids that are grinding down to dust. Such a large mass in solids is consistent with Fom b having formed in situ.
Note: