Finite density phase transition of QCD with and using canonical ensemble method
May, 2010
28 pages
Published in:
- Phys.Rev.D 82 (2010) 054502
e-Print:
- 1005.4158 [hep-lat]
Report number:
- UK-10-04
View in:
Citations per year
Abstract: (arXiv)
In a progress toward searching for the QCD critical point, we study the finite density phase transition of and 2 lattice QCD at finite temperature with the canonical ensemble approach. We develop a winding number expansion method to accurately project out the particle number from the fermion determinant which greatly extends the applicable range of baryon number sectors to make the study feasible. Our lattice simulation was carried out with the clover fermions and improved gauge action. For a given temperature, we calculate the baryon chemical potential from the canonical approach to look for the mixed phase as a signal for the first order phase transition. In the case of , we observe an 'S-shape' structure in the chemical potential-density plane due to the surface tension of the mixed phase in a finite volume which is a signal for the first order phase transition. We use the Maxwell construction to determine the phase boundaries for three temperatures below . The intersecting point of the two extrapolated boundaries turns out to be at the expected first order transition point at with . This serves as a check for our method of identifying the critical point. We also studied the case, but do not see a signal of the mixed phase for temperature as low as 0.83 .- 12.38.Gc
- 12.38.Aw
- 11.15.Ha
- quantum chromodynamics: critical phenomena
- density: finite
- fermion: determinant
- potential: chemical
- flavor: 4
- flavor: 2
- finite temperature
References(55)
Figures(18)