Geometric dynamics on the automorphism group of principal bundles: geodesic flows, dual pairs and chromomorphism groups

Jun, 2010
52 pages
e-Print:
DOI:

Citations per year

20202021202210
Abstract: (arXiv)
We formulate Euler-Poincaré equations on the Lie group Aut(P) of automorphisms of a principal bundle P. The corresponding flows are referred to as EPAut flows. We mainly focus on geodesic flows associated to Lagrangians of Kaluza-Klein type. In the special case of a trivial bundle P, we identify geodesics on certain infinite-dimensional semidirect-product Lie groups that emerge naturally from the construction. This approach leads naturally to a dual pair structure containing δ-like momentum map solutions that extend previous results on geodesic flows on the diffeomorphism group (EPDiff). In the second part, we consider incompressible flows on the Lie group of volume-preserving automorphisms of a principal bundle. In this context, the dual pair construction requires the definition of chromomorphism groups, i.e. suitable Lie group extensions generalizing the quantomorphism group.
Note:
  • 52 pages; revised version
  • Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits
    • V.I. Arnold
      • Annales Inst.Fourier 16 (1966) 319-361
  • [1978], Foundations of Mechanics
    • R. Abraham
      ,
    • J.E. Marsden
  • The Structure of Classical Diffeomorphism Groups
    • A. Banyaga
  • Publishers
    • A. Banyaga
    • GAUGE THEORY AND VARIATIONAL PRINCIPLES

      • D. Bleecker
    • A, 1
      • An integrable shallow water equation with peaked solitons, Phys
        • R. Camassa
          ,
        • D.D. Holm
      • A two-component generalization of the Camassa-Holm equation and its solutions
        • M. Chen
          ,
        • S. Liu
          ,
        • Y. Zhang
          • Lett.Math.Phys. 75 (2005) 1-15
      • On an integrable two-component Camassa-Holm shallow water system
        • A. Constantin
          ,
        • R.I. Ivanov
          • Phys.Lett.A 372 (2008) 7129-7132
      • Groups of diffeomorphisms and the motion of an incompressible fluid
        • D.G. Ebin
          ,
        • J.E. Marsden
          • Annals Math. 92 (1970) 102-163
      • The Navier-Stokes-alpha model of fluid turbulence, Phys
        • C. Foias
          ,
        • D.D. Holm
          ,
        • E.S. Titi
      • D, 152/3 505-519
        • Garcia
          • L.C. de Andrade
            • Phys.Scripta 73 (2006) 484-489
        • Well-posedness of higher dimensional Camassa-Holm equations on manifolds with boundary, Bull. Transilv. Univ. Bra¸ sov Ser. III 2(51), 55-58
          • F. Gay-Balmaz
        • The Lie-Poisson structure of the LAE-α equation, Dyn. Partial
          • F. Gay-Balmaz
            ,
          • T.S. Ratiu
            • Diff.Eq. 2 25-57
        • Reduced Lagrangian and Hamiltonian formulations of EulerYang-Mills fluids
          • F. Gay-Balmaz
            ,
          • T.S. Ratiu
            • J.Symplectic Geom. 6 (2008) 189-237
        • The geometric structure of complex fluids, Adv. Appl. Math. 42
          • F. Gay-Balmaz
            ,
          • T.S. Ratiu
        • [2]
          176-275
          • Vlasov moment flows and geodesics on the Jacobi group, preprint
            • F. Gay-Balmaz
              ,
            • C. Tronci
          • Dual pairs in fluid dynamics, Ann. Glob. Anal. Geom., to appear
            • F. Gay-Balmaz
              ,
            • C. Vizman
          • The Hamiltonian structure of classical chromohydrodynamics, Phys. D 6 , 179-194
            • J. Gibbons
              ,
            • D.D. Holm
              ,
            • B. Kupershmidt
          • Non-linear Grassmannians as coadjoint orbits
            • S. Haller
              ,
            • C. Vizman
              • Math.Ann. 329 (2004) 771