A K3 in ϕ4\phi^4

Jun 21, 2010
28 pages
Published in:
  • Duke Math.J. 161 (2012) 10, 1817-1862
e-Print:

Citations per year

20102014201820222025051015
Abstract: (arXiv)
Inspired by Feynman integral computations in quantum field theory, Kontsevich conjectured in 1997 that the number of points of graph hypersurfaces over a finite field \F_q is a (quasi-) polynomial in qq. Stembridge verified this for all graphs with 12\leq12 edges, but in 2003 Belkale and Brosnan showed that the counting functions are of general type for large graphs. In this paper we give a sufficient combinatorial criterion for a graph to have polynomial point-counts, and construct some explicit counter-examples to Kontsevich's conjecture which are in ϕ4\phi^4 theory. Their counting functions are given modulo pq2pq^2 (q=pnq=p^n) by a modular form arising from a certain singular K3 surface.
Note:
  • Final version
  • Feynman graph
  • modular
  • surface
  • phi**n model: 4
  • perturbation theory: higher-order
  • mathematical methods
  • [1]
    : Feynman motives and deletion-contraction relations, In: Topology of Algebraic Varieties and Singularities, Contemporary Mathematics 538, AMS . 32 FRANCIS BROWN AND OLIVER SCHNETZ
    • P. Aluffi
      ,
    • M. Marcolli
  • [2]
    : Matroids, motives, and a conjecture of Kontsevich
    • P. Belkale
      ,
    • P. Brosnan
      • Duke Math.J. 116 (2003) 147-188
  • [3]

      • Int.J.Mod.Phys.C 6 (1995) 519-524,
      • In *Pisa 1995, Proceedings, New computing techniques in physics research* 127-132, and Milton Keynes Open U. - OUT-4102-57 (95,rec.May) 6 p. Mainz U. - MZ-TH-95-12 (95,rec.May) 6 p. Hobart Tasmania U. - UTAS-PHYS-95-12 (95,rec.May) 6 p
  • [4]
    : Motives associated to sums of graphs
    • S. Bloch
  • [6]
    : Mixed Tate motives over Z, to appear in Annals of Math
    • F. Brown
  • [7]
    : The massless higher-loop two-point function, Comm. in Math
    • F. Brown
      • Physics 287 (2009) 925-958
  • [9]
    : Spanning forest polynomials and the transcendental weight of Feynman graphs, Comm. in Math
    • F. Brown
      ,
    • K. Yeats
      • Physics 301 (2011) 357-382
  • [10]
    : On Polynomials of Spanning trees
    • F. Chung
      ,
    • C. Yang
      • Ann.Comb. 4 (2000) 13-25
  • [11]
    : Cohomology of graph hypersurfaces associated to certain Feynman graphs
    • D. Doryn
  • [12]
    : On one example and one counterexample in counting rational points on graph hypersurfaces
    • D. Doryn
  • [13]
    : On a rationality question in the Grothendieck ring of varieties
    • H. Esnault
      ,
    • E. Viehweg
  • [14]
    : Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme gehührt wird, Annalen der Physik und Chemie 72, no. 12, 497-508 (1847)
    • G. Kirchhoff
    • [15]
      : Motivic Orthogonal Two-Dimensional Representations of Gal(Q/Q)
      • R. Livné
        • Isr.J.Math. 92 (1995) 149-156
    • [16]
      : A negative result on the representation of modular forms by theta series
      • W. Parry
        • J.Reine Angew.Math. 310 (1979) 151-170
    • [17]
      : Quantum periods: A census of φ4 transcendentals, Jour. Numb. Theory and Phys. 4 no. 1, 1-48
      • O. Schnetz
    • [18]
      : Quantum field theory over Fq, The Electronic Jour. of Comb. 18, #P102
      • O. Schnetz
    • [19]
      : CM newforms with rational coefficients
      • M. Schütt
        • Ramanujan J. 19 (2009) 187-205
    • [20]
      : On Singular K3 Surfaces, in Complex Analysis and Algebraic Geometry, W. Baily and T. Shioda (eds.) Iwanami Shoten, Tokyo, pp. 119-136
      • T. Shioda
        ,
      • H. Inose
    • [21]
      : Online encyclopedia of integer sequences, A140686
      • N. Sloane
      • [22]
        : Cours d’arithmétique, Presse Universitaire de France
        • J.-P. Serre
      • [23]
        : Spanning trees and a conjecture of Kontsevich
        • R.P. Stanley
          • Ann.Comb. 2 (1998) 351-363
      • [24]
        : Counting points on varieties over finite fields related to a conjecture of Kontsevich, Ann. Combin. 2, 365-385
        • J. Stembridge