Particle Collisions on Stringy Black Hole Background

Jul, 2010
15 pages
Published in:
  • JHEP 12 (2010) 066
e-Print:

Citations per year

20102014201820222025024681012
Abstract: (arXiv)
The collision of two particles in the background of a Sen black hole is studied. With the equations of motion of the particles, the center-of-mass energy is investigated when the collision takes place at the horizon of a Sen black hole. For an extremal Sen black hole, we find that the center-of-mass energy will be arbitrarily high with two conditions: (1) spin a0a\neq 0 and (2) one of the colliding particles has the critical angular momentum lc=2l_{\text{c}}=2. For a nonextremal Sen black hole, we show that, in order to obtain an unlimited center-of-mass energy, one of the colliding particles should have the critical angular momentum lc=2r+/al'_{\text{c}}=2 r_{+}/a (r+r_{+} is the radius of the outer horizon for a nonextremal black hole). However, a particle with the angular momentum l=lcl=l'_{\text{c}} could not approach the black hole from outside of the horizon through free fall, which implies that the collision with arbitrarily high center-of-mass energy could not take place. Thus, there is an upper bound of the center-of-mass energy for the nonextremal black hole. We also obtain the maximal center-of-mass energy for a near-extremal black hole and the result implies that the Planck-scale energy is hard to be approached. Furthermore, we also consider the back-reaction effects. The result shows that, neglecting the gravitational radiation, it has a weak effect on the center-of-mass energy. However, we argue that the maximum allowed center-of-mass energy will be greatly reduced to below the Planck-scale when the gravitational radiation is included.
Note:
  • 17 pages, 4 figures, published version
  • Black Holes
  • Classical Theories of Gravity
  • black hole: string
  • string model: heterotic
  • black hole: horizon
  • scattering: two-particle
  • geodesic
  • orbit
  • numerical calculations