Calibration biases in measurements of weak lensing
Mar, 2011Citations per year
Abstract: (arXiv)
As recently shown by Viola et al., the common (KSB) method for measuring weak gravitational shear creates a non-linear relation between the measured and the true shear of objects. We investigate here what effect such a non-linear calibration relation may have on cosmological parameter estimates from weak lensing if a simpler, linear calibration relation is assumed. We show that the non-linear relation introduces a bias in the shear-correlation amplitude and thus a bias in the cosmological parameters Omega_matter and sigma_8. Its direction and magnitude depends on whether the point-spread function is narrow or wide compared to the galaxy images from which the shear is measured. Substantial over- or underestimates of the cosmological parameters are equally possible, depending also on the variant of the KSB method. Our results show that for trustable cosmological-parameter estimates from measurements of weak lensing, one must verify that the method employed is free from ellipticity-dependent biases or monitor that the calibration relation inferred from simulations is applicable to the survey at hand.Note:
- 5 pages, 3 figures, submitted to A&A
References(12)
Figures(0)