Non-metric chaotic inflation

Jul, 2011
7 pages
Published in:
  • JCAP 05 (2012) 023
e-Print:
Report number:
  • HIP-2011-20-TH,
  • ITP-UU-11-28,
  • SPIN-11-21,
  • TTK-11-25

Citations per year

201120142017202020220123456
Abstract: (arXiv)
We consider inflation within the context of what is arguably the simplest non-metric extension of Einstein gravity. There non-metricity is described by a single graviscalar field with a non-minimal kinetic coupling to the inflaton field Ψ\Psi, parameterized by a single parameter γ\gamma. We discuss the implications of non-metricity for chaotic inflation and find that it significantly alters the inflaton dynamics for field values ΨMP/γ\Psi \gtrsim M_P/\gamma, dramatically changing the qualitative behaviour in this regime. For potentials with a positive slope non-metricity imposes an upper bound on the possible number of e-folds. For chaotic inflation with a monomial potential, the spectral index and the tensor-to-scalar ratio receive small corrections dependent on the non-metricity parameter. We also argue that significant post-inflationary non-metricity may be generated.
Note:
  • 7 pages, 1 figure
  • inflation: chaos
  • power spectrum: scalar
  • graviscalar
  • gravitation
  • power spectrum: tensor
  • Palatini model