The role of the ergosphere in the Blandford-Znajek process

Milton Ruiz1*, Carlos Palenzuela2†, Filippo Galeazzi3‡, and Carles Bona4§

1Departament de Física, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma, Spain
2Canadian Institute for Theoretical Astrophysics, Toronto, Ontario M5S 3H8, Canada
3Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Potsdam-Golm, Germany
4Departamento de Astronomía y Astrofísica, Universitat de València, 46100 Burjassot (Valencia), Spain

27 February 2013

ABSTRACT
The Blandford-Znajek process, one of the most promising model for powering the relativistic jets from black holes, was initially introduced as a mechanism in which the magnetic fields extract energy from a rotating black hole. We study the evolution of force-free electromagnetic fields on regular spacetimes with an ergosphere, which are generated by rapidly rotating stars. Our conclusive results confirm previous works, claiming that the Blandford-Znajek mechanism is not directly related to the horizon of the black hole. We also show that the radiated energy depends exponentially on the compactness of the star.

Key words: gravitation - magnetic fields – relativistic processes – methods: numerical

1 INTRODUCTION
The Blandford-Znajek (BZ) process is one of the leading models to explain the launching of powerful relativistic jets emerging from the supermassive black holes at the center of the galaxies (i.e. Active Galactic Nuclei), and the more moderated ones coming from stellar mass black holes (i.e. microquasars). The main ingredients of this process are a central rotating black hole and an accretion disk, which supports a magnetic field threading the black hole horizon. This magnetic field is twisted by the spinning black hole, producing an outgoing electromagnetic flux which extracts energy and angular momentum from the spacetime.

Although the BZ model was introduced a long time ago (R. D. Blandford and R. L. Znajek, 1977), it is only recently that many issues and theoretical discoveries concerning this mechanism have been settled. These advances on the understanding of the BZ process have been enabled by numerical simulations. For instance, it has been shown that only the magnetic fields lines threading the ergosphere of the black hole (i.e. the region near the black hole where negative killing energies can exist) rotate due to the frame dragging effect, whether or not they cross the horizon (Komissarov, 2002, 2004, 2005, 2009). These twisted magnetic fields are carrying the energy of the relativistic jet, which seems to come from the ergosphere. Moreover, it is now understood the dependence of the luminosity on the black hole spin magnitude (Tchekhovskoy et al., 2010; Palenzuela et al., 2010) and its orientation (Palenzuela et al., 2010). It has also been shown the robustness of the process with respect to different boundary conditions (Palenzuela et al., 2011), and its resemblance to ideal MHD solutions in the limit of high magnetization (McKinney & Gammie, 2004; Komissarov, 2003). A generalization of the BZ process to boosted non-spinning black holes has also been investigated by Neilsen et al. (2010), where the magnetic fields extract the translational kinetic energy from the black holes. In this case, there is also an extraction of rotational energy through the original BZ process if the boosted black holes are also spinning. During the coalescence of binary black hole surrounded by a magnetized circumbinary disk, this generalized BZ process will produce a dual jet structure during the inspiral phase which will result into a single BZ jet after the merger (Palenzuela et al., 2011).

The basic effects of the BZ mechanism can be explained by invoking the membrane paradigm (see Thorne & Macdonald, 1982; Thorne et al., 1986 for details), which endows to the black hole horizon some physical properties like a surface charge density and a resistivity. The problem is then reduced to a spherical conductor with a relative motion with respect to asymptotic magnetic field lines via rotation or translation. The magnetic field is produced by an external source and described by the force-free approximation. In spite of its simplicity and relative success, this analogy does not yet explain the source of the energy, which cannot be assigned to the horizon due to causality arguments (Punsly & Coroniti, 1983, 1990). The membrane paradigm implies that the key ingredient of the mechanism is the black hole horizon, in contrast
with the arguments, pointing rather to the ergosphere, presented by Komissarov. Because the intrinsic marriage of the horizon and the ergosphere on black hole spacetimes, one could confuse the physical phenomena generated by each of them. It is therefore desirable to study the effect of each component separately.

In this paper, we perform a systematic study of the isolated effect of the ergosphere in the EM fields, by considering regular spacetimes produced by rapidly rotating neutron stars. By increasing the compactness of the star an ergosphere appears with a toroidal topology (see \cite{Ansorgetal2002} for details). The compact object is immersed in a force-free environment produced by an externally sourced magnetic field. We will assume that the force-free EM fields are not coupled to the fluid, so their dynamics will be determined only by their evolution equations and by the properties of the curved spacetime. Our aim is to analyze the precise role of the ergosphere on the activation of the BZ mechanism.

The paper is organized as follows. A detailed description of our model and a summary of the force-free evolution equations on a curved background is presented in Section 2. Some known results for stationary and axisymmetric spacetimes are summarized in Section 3. The numerical setup and the initial data is described in Section 4, while that times are summarized in Section 3. The numerical results are presented in Section 5. Finally, we summarize our conclusions in Section 6. The robustness of our solutions against several sources of error is studied in the Appendix.

2 MODEL OF PASSIVE FORCE-FREE ENVIRONMENT

We consider the evolution of a magnetized plasma with negligible inertia on the spacetime produced by a rotating compact star which is assumed to be both stationary and axisymmetric. Our approach will involve the resolution of two different systems of equations. On one hand, the initial data is obtained by solving the Einstein equations coupled to the Hydrodynamic equations. We will use an initial data solver developed by \cite{Ansorgetal2002} in order to obtain the solution for both the fluid and the spacetime geometry. On the other hand, we will evolve the hyperbolic PDE system for the low-inertia magnetized plasma on this curved background, which can be described by the force-free approximation of the Maxwell equations. An important point of our model is that it neglects any coupling between the plasma and the fluid of the star. In this way, the electromagnetic fields will not interact directly with the fluid, and its evolution will be determined solely by the force-free equations in a curved spacetime. In this section, we summarize the formulation used to describe these systems of equations. In particular, we review in detail the Eulerian description of electrodynamics in the force-free approximation.

2.1 The 3+1 decomposition

We consider a spacetime \((M, g_{ab})\) which is foliated by a family of spacelike hypersurfaces \(\Sigma_t\) parametrized by time function \(t\). The induced metric on these spatial hypersurfaces is denoted by \(g_{ij}\). Coordinates defined on adjacent hypersurfaces can be related through the lapse function \(\alpha\), that measures the proper time elapsed between both hypersurfaces, and the shift vector \(\beta^i\), that controls how the spatial coordinates propagate from one hypersurface to the next. An observer moving along the normal direction to the hypersurfaces (Eulerian observer) will have a coordinate speed given by \(-\beta^i\), and will measure a proper time \(d\tau = \alpha \, dt\). In terms of these quantities, it is possible to bring the metric of the spacetime into the form

\[
\begin{align*}
 ds^2 &= g_{ab} \, dx^a \, dx^b \\
 &= -\alpha^2 \, dt^2 + \gamma_{ij} \left(dx^i + \beta^i \, dt \right) \left(dx^j + \beta^j \, dt \right). \quad (1)
\end{align*}
\]

Here, and in what follows, Latin indices from the beginning of the alphabet \((a, b, c, \cdots)\) denote four-dimensional spacetime quantities, whereas Latin indices from the middle of the alphabet \((i, j, k, \cdots)\) are spatial. It is also convenient to introduce the extrinsic curvature \(K_{ij}\), which is associated to the way in which the hypersurfaces are immersed in the spacetime \((M, g_{ab})\), in the form

\[
 K_{ij} = -\frac{1}{2 \alpha} \left(\partial_t - L_{\beta} \right) \gamma_{ij}. \quad (2)
\]

Notice that the Eulerian observer is defined independently of the space coordinates. It can be interpreted as being at rest in the hypersurface \(\Sigma_t\). In the context of spinning stars or black holes, this observer is also called the locally non-rotating observer or zero-angular-momentum observer (ZAMO).

2.2 3+1 decomposition of the Maxwell Equations

The covariant Maxwell equations are given by

\[
 \nabla_a F^{ab} = 4 \pi I^a, \quad \nabla_a * F^{ab} = 0, \quad (3)
\]

where \(I^b\) is the 4-current and \(F^{ab}\), \(* F^{ab}\) are the Maxwell and the Faraday tensor, respectively. In order to provide an Eulerian description of the above equations, it is convenient to introduce the electric and magnetic fields measured by those observers, namely

\[
 E^a = F^{ab} n_b, \quad B^a = * F^{ab} n_b, \quad (4)
\]

where \(n^a\) is the unit vector normal to the hypersurface \(\Sigma_t\). Notice that, if the electric and magnetic susceptibilities of the medium vanish, as in vacuum or in a highly ionized plasma, the Faraday tensor becomes the dual of the Maxwell tensor. In a similar way, we define the charge density and current as

\[
 q = -I^a \, n_a, \quad J^a = \frac{1}{2} \star I^b, \quad (5)
\]

where \(\star = \delta^a_b + n^a \, n_b\) is the projection operator onto the hypersurface \(\Sigma_t\). Using the previous definitions, the Maxwell equations can be rewritten in the form

\[
 \begin{align*}
 (\partial_t - L_{\beta}) \, E^a &= \epsilon^{ijk} D_j (\alpha E_k) + \alpha K \, E^a - 4 \pi \alpha \, J^a, \quad (6) \\
 (\partial_t - L_{\beta}) \, B^a &= -\epsilon^{ijk} D_j (\alpha B_k) + \alpha K \, B^a, \quad (7) \\
 D_i E^i &= 4 \pi \, q, \quad D_i B^i = 0. \quad (8)
\end{align*}
\]

Here \(D_i = \nabla_i - n_i \nabla_a\) is the covariant derivative associated with the spatial metric \(\gamma_{ij}\) and \(\epsilon^{ijk}\) is the Levi-Civita tensor.
It is useful to introduce, for later convenience, the vector potential U_a, which can be decomposed into

$$\Phi = -U_a n^a$$

$$A_a = \frac{1}{\ell} u_a$$

(9)

In terms of this vector potential, the Maxwell tensor can be written down as

$$F_{ab} = -2 \nabla_a U_b$$

(10)

On the other hand, the electromagnetic energy-momentum tensor,

$$T_{ab} = \frac{1}{4\pi} \left[F_a^c F_{bc} - \frac{1}{2} g_{ab} F^{cd} F_{cd} \right]$$

(11)

can be decomposed in the form

$$T_{ab} = \mathcal{E} n_a n_b + 2 n_a S_b + S_{ab}$$

(12)

where \mathcal{E}, S_a and S_{ab} correspond to the local electromagnetic energy density, the momentum density (Poynting vector) and the spatial stress tensor as measured by the Eulerian observer. Finally, the local conservation of the energy-momentum tensor (11) is given by

$$\nabla_b T_{ab} = -F^{ab} I_b$$

(13)

The key point about this discussion is that it has been formulated in terms of physical quantities measured by the Eulerian observer (ZAMO). In order to close the system of the Maxwell equations, where a relation between the EM fields and the electric current is required, one can use quantities measured by the Eulerian observer in the same way as in the special relativistic electrodynamics (see Macdonald & Thorne (1982); Komissarov (2004) for details).

2.3 Force-free approximation

The force-free approximation is valid in magnetized plasmas when the electromagnetic energy density \mathcal{E} dominates over matter energy density. It happens, for instance, in the magnetospheres of neutron stars or black holes, where the density of the plasma is so extremely low that even moderate magnetic field stresses will dominate over the fluid pressure gradients. In this limit, the stress-energy tensor of the plasma therefore satisfies

$$T^{ab} = T_{\text{fluid}}^{ab} + T_{\text{EM}}^{ab} \simeq T_{\text{EM}}^{ab}$$

(14)

The local conservation of this stress-energy tensor implies that the Lorentz force vanishes,

$$F^{ab} I_b \simeq 0$$

(Goldreich & Julian (1969); R. D. Blandford and R. L. Znajek (1977)). This expression can be written, in terms of 3+1 quantities, as

$$E^i J_j = 0, \quad q E^i + \epsilon^{ijk} J_j B_k = 0$$

(15)

Taking the scalar and the vector product between the magnetic field B^i and the spatial projection of the Lorentz force (14), we obtain

$$E^i B_i = 0, \quad J^i = \frac{1}{B^2} \left(J^i_\parallel + J^i_\perp \right)$$

(16)

where J^i_\parallel and J^i_\perp are the component of the current parallel and perpendicular to the magnetic field B^i, respectively. These are defined as

$$J^i_\parallel = J^i B_i B^i + J^i_\perp = q \epsilon^{ijk} E_j B_k$$

(17)

The first relation in (16) implies that the electric and magnetic field must be perpendicular. The second one defines the current up to the parallel component J^i_\parallel. Using the Maxwell equations, one can compute $(\delta_a - L_a)(E^i B_i) = 0$, which has to vanish due to (15). This condition imposes a constraint for J^i_\parallel, which can be substituted into Eq. (13) to complete the specification of the current (see Gruzinov (2007) for details). We will use instead an alternative prescription to enforce the force-free conditions, which has been used successfully in previous studies of force-free magnetospheres (Spitkovsky (2006); Palenzuela et al. (2010)).

3 STATIONARY AND AXISYMMETRIC SPACETIMES

In the previous section, we have summarized the Maxwell equations and the force-free approximation on a generic spacetime. Nevertheless, since we are interested on stationary and axisymmetric spacetimes, one can consider a set of coordinates adapted to these symmetries. In these coordinates, the metric of the spacetime can be brought into the standard form (Lewis (1932); Papapetrou (1960))

$$ds^2 = -\alpha^2 dt^2 + g_{\phi \phi} (d\phi - \omega dt)^2 + g_{rt} dr^2 + g_{\theta \theta} d\theta^2$$

(18)

where the metric coefficients \(\{\alpha, \omega, g_{rt}, g_{\phi \phi}, g_{\theta \theta}\} \) depend only on r and θ. Note that this metric describes usual astrophysical objects such as neutron star or black hole spacetimes. In particular, the Kerr metric can be written in the above form (Bergamini & Viaggiu (2004)). As we have mentioned before, the shift vector is related to the relative velocity between the Eulerian observer and the stationary spatial coordinates. One can then interpret ω as the drag velocity of this observer with respect to the hypersurface \(\Sigma \).

Using the decomposition of the Maxwell tensor in terms of the vector potential Φ, the condition of axisymmetry and stationarity implies that the electric field is purely poloidal, $E_\phi = 0$. According to (16), it follows that E^i is perpendicular to the poloidal components of the magnetic field, so that one can rewrite E^i in the form

$$E^i = \epsilon^{ijk} B^j U^k$$

(19)

where U^k is an axial vector given by (Komissarov (2004))

$$U^a = \frac{1}{\alpha} (\Omega - \omega) \chi^a$$

(20)

and $\chi^a = \partial_\phi$ is the axial killing vector of the spacetime. Notice that, according to (13), the shift vector is $\beta^k = -\omega \chi^k$. Therefore, one can interpret the velocity U^a as the velocity of the magnetic field relative to the Eulerian observer and Ω as the angular velocity of the magnetic lines, which can be written in terms of the Maxwell tensor as (R. D. Blandford and R. L. Znajek (1977))

$$\Omega = \frac{F_{r \phi}}{F_{t \phi}} = \frac{F_{t \phi}}{F_{\phi \phi}}$$

(21)

It is also useful to calculate the scalar $B^2 - E^2$ which, using the electric field defined by (19), takes the form

$$(B^2 - E^2) \alpha^2 = B^2 \alpha^2 - 2 g_{\phi \phi} B^2_{\phi} (\Omega - \omega)^2$$

(22)

where $B^2_{\phi} = B_r B^r + B_\theta B^\theta$ is the magnitude of the poloidal component of the magnetic field. This relation implies a...
change of sign of this invariant in highly compact rotating spacetimes with large $g_{\phi\phi}/\alpha^2$ and ω. Notice that, in electrovacuum scenarios, the Maxwell equations imply that B^ϕ vanishes. In this case, one can also assume that the magnetic field is generated by distant plasma of large inertia, which means that the resulting magnetosphere will reach a steady state when $\Omega = 0$. This implies that the invariant (22) becomes
\[(B^2 - E^2) \alpha^2 = B^2 (\alpha^2 - \beta^2).\] (23)

Inside the ergosphere $\alpha^2 - \beta^2 < 0$. Therefore, the change of the sign of the invariant is related, at least in electrovacuum, with the presence of an ergosphere.

Finally, it is possible to define conserved quantities associated to the Killing vectors of the spacetime $\xi^a = \partial_t$ and $\chi^a = \partial_\phi$. On one hand, the red shifted energy density, corresponding to the Killing vector χ^a, is defined as (see \cite{BlandfordZnajek1977,MacdonaldThorne1982})
\[E_\xi = \mathcal{T}^{ab} \xi_a n_b = \alpha E + \omega S^i \chi_i,\] (24)
with flux of energy given by
\[S^i = -\mathcal{T}^{bc} \xi_c n_b = \alpha S^i + \omega S^{ij} \chi_j.\] (25)

On the other hand, the angular momentum density, associated to the Killing vector χ^a, is defined
\[\mathcal{E}_\chi = -\mathcal{T}^{ab} \chi_a n_b = S^i \chi_i,\] (26)
with a flux of angular momentum given by
\[S^i = \mathcal{T}^{bc} \chi_c n_b = S^{ij} \chi_j.\] (27)

Since E_ϕ vanishes, the poloidal flux vector S^i_χ satisfies
\[S^p_\chi = -\frac{1}{4\pi} (B^j \chi^i) B^p,\] (28)
Using this condition and (13), it is straightforward to show that
\[S^p_\xi = \Omega S^p_\chi.\] (29)

Therefore, both the flux of red shifted energy and the flux of angular momentum are transported along the poloidal field lines.

According to Eq. (20), the EM radiated energy crossing a spherical surface at a given radius is
\[\partial_t S = 2\pi \int_0^\pi \sqrt{-g} S^i_\xi d\theta.\] (30)

Note that, on a regular spacetime in Lewis-Papapetrou coordinates \cite{BergaminiViaggiu2004}, the radiated energy flux density S^i_ξ is given by
\[S^i_\xi = \frac{\Omega r}{2\pi} (B^j \chi^i) B^p\alpha^2 g_{\phi\phi}.\] (31)

Moreover, on the case of a Kerr spacetime in Lewis-Papapetrou coordinates \cite{BergaminiViaggiu2004}, the above expression becomes
\[S^i_\xi = \frac{\Omega r}{2\pi} B^j B^\phi \Delta,\] (32)
where $\Delta = r^2 + a^2 - 2Mr$. Since the Kerr spacetime in these coordinates is singular at the horizon, it is convenient to transform to other coordinates that penetrate the horizon smoothly. This is the case for the Kerr-Schild coordinates, where the energy flux density S^i_ξ can be written as
\[S^i_\xi = \frac{\Omega r}{2\pi} (B^j \chi^i) \left(\frac{a}{2Mr} - \frac{\Omega}{\pi} \right) \sin^2 \theta - \frac{\Omega}{4\pi} \Delta B^j B^\phi \sin^2 \theta,\] (33)
At the horizon, where $r = r_H$ and $\Delta = 0$, it becomes
\[S^i_\xi|_{r=r_H} = \frac{\Omega r_H}{2\pi} (B^j \chi^i) (\Omega_H - \Omega) \sin^2 \theta,\] (34)
where $r_H = M + \sqrt{M^2 - a^2}$ is the radius of the horizon and $\Omega_H \equiv a/(2Mr_H)$ can be interpreted as its rotation frequency, which is just the rotation velocity of a Eulerian observer at the apparent horizon. This result implies that, if $0 < \Omega < \Omega_H$ and $B^j \chi^i \neq 0$, then there is an outward directed energy flux at the horizon. Therefore, rotational energy is being extracted from the black hole due to the magnetic field lines. The use of Kerr-Schild coordinates allow for direct computations of the flux at the horizon without any special treatment as in \cite{BlandfordZnajek1977,MacdonaldThorne1982}. However, one message from this simple calculation is that energy comes out of the event horizon, which is forbidden at the classical level since the horizon is a null surface. The problem lies in the fact that the energy flux defined on other surfaces is not obviously positive definite.

4 NUMERICAL SET UP

4.1 Diagnostic Quantities

To extract physical information, we monitor the rotation frequency of the magnetic field lines \cite{BlandfordZnajek1977} which is constant along magnetic field lines on axisymmetric and stationary solutions \cite{BlandfordZnajek1977}, and the Newman-Penrose electromagnetic scalars \{Φ_0, Φ_2\}, which are computed by contracting the Maxwell tensor with a suitable null tetrad (see e.g. \cite{Teukolsky1973}),
\[\Phi_0 \equiv -F^{ab} m_a n_b, \quad \Phi_2 \equiv F^{ab} m_a n_b.\] (35)

The total energy flux (luminosity) of electromagnetic waves, which accounts for the energy carried off by outgoing waves to infinity, is
\[L_{EM} = \lim_{r \to \infty} \int r^2 \left(|\Phi_2 - \Phi^B_2|^2 - |\Phi_0 - \Phi^B_0|^2 \right) d\Omega,\] (36)
where Φ^B_2 and Φ^B_0 are the background scalars produced by the steady part of the solution, which vanish only at far distances from the electromagnetic sources. However, since we are considering for simplicity that the magnetic field is produced by a very distant external source, there will be a non-zero contribution to these background scalars induced by the asymptotically uniform magnetic field configuration. An isolated system with no incoming radiation satisfies $\Phi_0 = \Phi^B_0$. Moreover, far from the star is valid the assumption that the background is approximately the same for the incoming and outgoing waves, so that $\Phi^B_2 \approx \Phi^B_0$. Combining these relations with the general form given by (36), it is obtained the simplified formula
\[L_{EM} = \lim_{r \to \infty} \int r^2 |\Phi_2 - \Phi_0|^2 d\Omega,\] (37)
which has been used previously in several works, reproducing successfully the expected analytical relations (Palenzuela et al. 2009, 2010; Neilsen et al. 2010). Notice that these expressions are equivalent to the radiated energy \[E \] evaluated at spatial infinity.

4.2 Numerical methods

We will use a finite difference scheme on a regular Cartesian grid to solve numerically the hyperbolic PDE system. To ensure sufficient resolution in an efficient manner we employ Adaptive Mesh Refinement (AMR) via the HAD computational infrastructure, that provides distributed, Berger-Oliger style AMR (HAD-Team 2002; Liebling 2002) with full sub-cycling in time, together with an improved treatment of artificial boundaries as it has been presented by Lehner et al. (2006). For these simulations, the refinement regions are fixed initially and not changed during the evolution (i.e. Fixed Mesh Refinement).

The spatial discretization is performed by using a fourth order accurate scheme satisfying the Summation By Parts (Palenzuela et al. (2009, 2010); Neilsen et al. (2010)). No-slip boundary conditions in our simulations, by setting the (time derivative) of the electrovacuum incoming lines using a third order accurate Runge-Kutta integration scheme with a Courant parameter of \[\lambda = 0.25 \] such that \[\Delta t = 0.25 \Delta x \] holds in each refinement level.

Our numerical domain consists of a cubical region defined by the intervals \(x^i \in [32M, 32M] \) with 61 points in the coarsest grid. We employ a fixed mesh refinement configuration with 6 levels of refinement, each one covering half of the domain of the parent coarser level. The coarsest resolution employed is \(\Delta x = 1.07 \) while the finest one is \(\Delta x = 0.017 \). The radius of the different stars in these units are described in Table II. We have adopted maximally dissipative boundary conditions in our simulations, by setting to zero the (time derivative) of the electrovacuum incoming modes (Palenzuela et al. 2011).

4.3 Initial data

The initial data for the spacetime geometry and the fluid variables produced by rotating stars is obtained by solving the Einstein and the Hydrodynamical equations with the assumptions of stationarity and axisymmetry. The rotating star solutions have been constructed using the code developped by Ansorg et al. (2002) based on a multi-domain spectral-method for representing the metric functions. The use of a spectral code has shown to be necessary to achieve high accuracy in the case of a stiff equation of state (e.g. for the extreme case of compactness \(M/R > 4/9 \approx 0.44 \) for this family of solutions).

Stationary and asymptotically flat configurations with an ergosphere but without an horizon have been proved to be unstable or marginally unstable under to scalar and electromagnetic perturbations (Friedman (1978)). For slowly rotating relativistic stars, the time scale of the instability is shown to be longer than the Hubble time (see e.g. Comins & Schultz (1978)). It has been shown by Cardoso et al. (2002) that, for the extreme case of compactness \(M/R > 0.5 \) and angular momentum \(J > 0.4M^2 \), the instability timescales reaches 0.1 seconds for an object with mass of 1M. In our simulations, however, both the spacetime and the fluid are stationary and therefore this instability cannot be active.

The initial data for the black hole is analytical. In the case of spinning black holes, we will use the Kerr-Schild coordinates (Kerr 1963), see e.g. D. Kramer & Herlt (1980) for more details),

\[g_{ab} = \eta_{ab} + 2H l_a l_b, \]

(42)

where \(\eta_{ab} \) is the Minkowsky metric and the scalar function \(H \) and the null vector \(l^b \) are defined by

\[H = \frac{r M}{r^2 + a^2 z^2/r^2}, \]

(43)

\[l_b = \left(\frac{1}{r^2 + a^2 z^2/r^2}, \frac{r y - a x}{r^2 + a^2 z^2/r^2}, \frac{r x + a y}{r^2 + a^2 z^2/r^2}, \frac{z}{r^2 + a^2 z^2/r^2} \right). \]

(44)

The compact object, either a neutron star or a black hole, is immersed in the external magnetic field produced by a distant current loop. This magnetic field is nearly constant initially near the compact object. In addition, it is chosen to be aligned with the spin of the compact object, which is
initially oriented along the z-axis. Therefore, the EM fields are initially set to \(B^\prime = B_0 \hat{z} \) and \(E^\prime = 0 \) throughout all the domain. The field strength \(B_0 \) is irrelevant, since we are assuming that the force-free fields behave like test fields (i.e. they do not modify the curvature of the spacetime), and it has been set to \(B_0 = 0.01 \). Since we are not considering any coupling between the fluid and the force-free EM fields, the dynamics of the latter will be only influenced by the regular spacetime both inside and outside the star. For all the effects, there will be no direct interaction between the EM fields and the fluid.

5 RESULTS

In this section we will describe the dynamics of the force-free fields evolving in the stationary spacetimes produced by very compact rotating objects with dimensionless spin parameter \(a \approx 0.9 \). We will concentrate on the cases with the presence of an ergosphere in the spacetime (see the Appendix for a discussion on the cases without ergosphere). We will also analyze the EM power (if any) emitted by the BZ process in these spacetimes, as well as the features of the EM fields after they have relaxed to the stationary solution.

All our simulations display an initial transient, in which the magnetic field is dragged and twisted around the spinning spacetime and induces a poloidal electric field. At late times the EM field relaxes to a stationary state, which is displayed in figure 1 for a representative case of regular spacetime with an ergosphere. This case corresponds to \(V_0 = -1.20 \) (see Table I). For comparison purposes, we have additionally included the results for the black hole case, a spacetime with an ergosphere but also with an horizon which hides a singularity. Further information on the structure of the solutions can be inferred from the currents and charge densities of these two cases, as displayed in fig. 2.

In the case of regular spacetimes with an ergosphere, the magnetic flux near the star is initially expelled, presenting large damped oscillations that relax after few periods. During this relaxation, which seems to be more relevant as the compactness of the star increases, there is an important isotropic emission of energy. When the stationary state is reached, all the magnetic fields from the region occupied by the star are twisted in the same direction than its angular momentum (in the \(z > 0 \) domain). The currents, in this case, are composed of an outflow external cylinder and an inflow inner one. There is also a current sheet where \(B^2 \lesssim E^2 \) in the intersection of the ergosphere with the equatorial plane, similar to the one that appears in the black hole case (Komissarov 2004, Palenzuela et al. 2010).

The black hole simulation, on the other hand, relaxes to the stationary state in a shorter timescale than the above case. The final state resembles the solution corresponding to the regular spacetime with an ergosphere, displaying an analogous structure of magnetic fields, currents and charge densities. This clearly indicates that the BZ mechanism acting on the spacetimes with an ergosphere is basically the same than in the black hole case.

The poloidal structure of the magnetic fields is almost identical in all the simulations, showing that the magnetic flux threading the spacetime occupied by the compact object is basically the same. The luminosity, evaluated in a sphere located at \(R \approx 10 r_c \) for the stars, and conveniently rescaled for the black hole, is displayed in the left panel of fig. 3 for all the simulations. The luminosity increases very fast as the compactness of the star increases, although it does not reach the high values of the black hole.

This smoothness is also found in the angular velocity of the magnetic field, displayed in the right panel of fig. 3, where \(\Omega \) has been normalized with respect to the central maximum value \(\omega_* \) for the stars, and with respect to \(\Omega_H \) for the black hole. As it was mentioned before, the angular velocity \(\Omega \) is confined to a small cylinder, showing that the jet is collimated to the region occupied by the compact object.

The fast growth of the maximum of this quantity as a function of the compactness of the star can be fitted accurately in this regime to an exponential function, as it is shown in the left panel of figure 4. The luminosity for the different cases can also be represented as a function of the compactness, showing roughly also an exponential dependence in the right panel of figure 4.

From our numerical results we have found the following scaling relations for the angular velocity \(\Omega \),

\[
\frac{\Omega}{\omega_*} \approx A e^{\lambda M/R},
\]

for the ratio of poloidal and toroidal components of the magnetic field

\[
B^p \approx -f \Omega B^r,
\]

with \(f \approx 1/5 \) for the spacetime with an ergosphere. Notice that these estimates contain large sources of error, since they both neglect the details of the spacetime geometry and the azimuthal dependence of these quantities. Nevertheless, they can be used to study the behavior of the solution in different limits and to obtain the right order of magnitude of the luminosity. By using the line element of our initial data (35), the energy flux density (36) reduces to

\[
S_{\xi}^t = \frac{-\Omega}{2\pi} B^r B^\phi W^2 \approx \frac{f \Omega}{2\pi} (B^r)^2 W^2 \approx \frac{A f \omega_*}{2\pi} (B^r)^2 W^2 e^{\lambda M/R},
\]

which is a positive definite quantity, and where we have used subsequently the above approximations. Notice that the scaling is similar to the BZ power in Eq. (34), except by the exponential dependence on the compactness, and is consistent with the results displayed at the right panel of fig. 4.

6 CONCLUDING REMARKS

We have studied the evolution of EM fields on rotating and highly compact regular spacetimes with an ergosphere. Our results show that if an ergosphere is present the structure of EM fields and currents are similar to the black hole ones. This implies that the same mechanism operates in both spacetimes, independently of the presence/absence of an horizon. Notice that these results are in agreement with the fact that the BZ process is not an effect caused by the horizon, as it was pointed out by Komissarov (2004, 2005) in the context of black holes.

In the case of a realistic rotating star, the fluid will be coupled with the EM fields and, therefore, they are forced
The role of the ergosphere in the Blandford-Znajek process

Figure 1. Rotating star and black hole. Magnetic field lines component in the plane \(x = 0 \) after the quasi-stationary state is reached, corresponding to the spacetime with an ergosphere (left panel) and to the black hole (right panel). The vertical lines indicate the poloidal component, while that the blue-red colors indicates the strength of the component normal to the plane. The structure of these two components of the magnetic field for both cases, star and black hole, are quite similar each other. The surface of the star is plotted as a black ellipsoid, while that the ergosphere is plotted in red.

Figure 2. Rotating stars and black hole. Induced charge density (in red-blue colors) and the poloidal currents (in vectors) on the plane \(x = 0 \) at the quasi-stationary state, corresponding to the same cases than figure 1. The surface of the star is plotted in black and the ergosphere in red lines.

Figure 3. Left panel displays the EM luminosity obtained in the rotating spacetimes with \(a = J/M^2 \approx 0.9 \). The luminosity increases monotonically with the compactness. Right panel displays the angular velocity of the magnetic field \(\Omega_r \), computed at \(r \approx 5r_s \) and normalized with respect to its maximum value inside the star (see Table 1).
to rotate following the fluid. So, the extraction process can be described by the simple model of the Faraday disk, which is even more efficient than the BZ process. In this case, the twist on the magnetic field will not be dominated by the spacetime but by the fluid rotation. In general, the strong dependence of Ω on the compactness will imply a low energy extraction on regular spacetimes even if matter is not present.

An example of regular and rotating spacetime may be produced by an orbiting binary black hole system, as it was considered by Lyutikov (2011). In this work it was suggested that the rotation of the spacetime inside the binary system, induced by the orbital motion of the black holes, would allow for two different channels of energy extraction: through the generalized BZ in boosted (and maybe rotating) black holes, which will produce a dual jet structure (Palenzuela et al. 2010), and through the BZ process on regular spacetimes inside the binary system. However, the lack of an ergosphere in the central region will probably prevent the activation of the BZ process (see the Appendix for a discussion on the case of spacetimes without ergosphere). Even if the BZ process takes place, and assuming that the luminosity still follows the exponential dependence shown earlier, the low compactness of the spacetime in this central region will induce a faint jet that will be overshadowed by the BZ process tapping kinetic energy (either translational or rotational) directly from the black holes.

Summarizing, we have found that the BZ process is also present on regular spacetimes with an ergosphere. Our conclusive results implies that we have to reconsider the membrane paradigm as a tool to explain the BZ mechanism which also seems to be able to extract energy from rotating regular spacetimes with ergospheres and boosted non-rotating black holes.

ACKNOWLEDGMENTS

We are in debt with L. Lehner and T. Garrett for stimulating discussions about the origin of the BZ process which initiated this project. We are also grateful to Marcus Ansorg and his collaborators for giving us the access to his spectral code and for the useful discussions on spectral method during his period at AEI. It is a pleasure to thank L. Lehner, S. Liebling, S. Komissarov, C. Thompson, as well as to our long term collaborators M. Anderson, E. Hirschmann and D. Neilsen for useful discussions and comments on this paper. We acknowledge support from Spanish Ministry of Science and Innovation under grants CSD2007-00042, CSD2009-00064 and FPA2010-16495, and Govern de les Illes Balears. Computations were performed in Scinet and Mare Nostrum (funded by BSC Grant No. FI-2011-3-0017).

REFERENCES

Table 1. \(m_b \) baryonic mass, \(M_{ADM} \) gravitational mass, \(J \) angular momentum, \(\Omega \) angular velocity of the fluid, \(r_e \) equatorial radius, \(r_c \) circumferential radius in Schwarzschild coordinates, \(\psi_c \) metric potential and \(V_0 \) parameter. All the configurations contain an ergosphere. The ratio between polar and equatorial radius, \(r_p/r_e \), is equal to 0.49 for all the configurations. All numerical values are in units with \(G = c = 1 \).

<table>
<thead>
<tr>
<th>(V_0)</th>
<th>(m_b)</th>
<th>(M_{ADM})</th>
<th>(J)</th>
<th>(\Omega)</th>
<th>(r_e)</th>
<th>(r_c)</th>
<th>(\psi_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>−1.00</td>
<td>0.1814</td>
<td>0.1395</td>
<td>0.0177</td>
<td>1.5685</td>
<td>0.1902</td>
<td>0.3553</td>
<td>1.360</td>
</tr>
<tr>
<td>−1.05</td>
<td>0.1885</td>
<td>0.1440</td>
<td>0.1891</td>
<td>1.5844</td>
<td>0.1857</td>
<td>0.3576</td>
<td>1.395</td>
</tr>
<tr>
<td>−1.10</td>
<td>0.1998</td>
<td>0.1509</td>
<td>0.0209</td>
<td>1.6103</td>
<td>0.1782</td>
<td>0.3610</td>
<td>1.450</td>
</tr>
<tr>
<td>−1.15</td>
<td>0.2018</td>
<td>0.1521</td>
<td>0.0212</td>
<td>1.6151</td>
<td>0.1768</td>
<td>0.3616</td>
<td>1.460</td>
</tr>
<tr>
<td>−1.20</td>
<td>0.2080</td>
<td>0.1576</td>
<td>0.0223</td>
<td>1.6298</td>
<td>0.1725</td>
<td>0.3661</td>
<td>1.490</td>
</tr>
</tbody>
</table>

Figure 4. (Left panel) The maximum of the (normalized) angular velocity of the magnetic field \(\Omega / \omega_c \), as a function of the compactness. A fit with the numerical results shows an exponential dependence \(A \lambda^{M/R} \) with \(A \approx 3 \times 10^{-10} \) and \(\lambda \approx 50 \). (Right panel) The EM luminosity calculated in the regular spacetimes, normalized with respect to the black hole one. Roughly, it seems to depend also exponentially on the compactness.
APPENDIX A: ROBUSTNESS OF THE RESULTS

We have checked the robustness of our solutions against several sources of error. One of the possible problems may come from the way in which the analysis quantities are evaluated. In particular, the surface where the luminosity is computed may be located too close to the source, where the spacetime is still far from being flat, producing an error in that measure. We have compared the luminosity computed in two surfaces located and 10 \(r_s \) for the case with \(V_0 = -1.2 \), obtaining a difference smaller than 5%. Another potential problem may come from the influence of the boundary conditions, which may produce unphysical reflections which may affect, after a light crossing time, the dynamics of the system. In our simulations this is not a problem since the solution relaxes to the stationary state before a light crossing time, and it remains unaffected afterwards.

Probably the most important source of inaccuracies comes from numerical discretization errors. We have compared three different spatial resolutions, corresponding to \(N = \{40, 60, 80\} \) points in the coarsest grid. Our comparisons are summarized in fig. A1 where we have restricted our analysis to a representative case corresponding to \(V_0 = -1.2 \). Notice that, in this case, there is an ergosphere, and consequently, a current sheet on the equatorial plane which is difficult to represent on a discretized grid. Nevertheless, the luminosity displays the expected fourth order convergence to a well defined solution.

We have also tried to study the relaxed solutions of spacetimes without an ergosphere. Although the luminosity reaches a quasi-stationary value, it changes dramatically with resolution and it does not seem to converge to a unique solution. This lack of convergence is shown in the left panel of fig. A2 for a representative case without ergosphere corresponding to \(V_0 = -0.97 \). In these cases there is a violation of the force-free condition, as it can be seen in the right panel of figure A2. The poloidal currents inside the star are not parallel to the poloidal magnetic field, a consequence of a non-vanishing toroidal electric field. This component has to vanish in stationary and axisymmetric spacetimes. Our guess is that there is no force-free solution with these boundary conditions unless a current sheet appears, and so the numerical evolution relaxes only to an approximated solution which depends strongly on the resolution. More work is needed to elucidate this issue, maybe considering the full MHD problem instead of the force-free limit.

This paper has been typeset from a \TeX/\LaTeX\ file prepared by the author.

Figure A1. The EM luminosity for the cases $V_0 = -1.2$ (with ergosphere) for three different spatial numerical resolution with $N = \{40, 60, 80\}$ points in the coarsest grid. The luminosity converges with the expected fourth order convergence.

Figure A2. (Left panel) EM luminosity for the same three different resolutions as in fig. A1. In this case the solutions do not display any convergence. (Right panel) Poloidal magnetic field lines (in blue) and poloidal currents vectors (in black) in the plane $x = 0$ after the quasi-stationary state is reached, corresponding to the spacetime without an ergosphere. The blue-red colors indicates the charge density, while that the black ellipsoid represents the surface of the star. Although the poloidal component of these fields has to be parallel in a force-free stationary and axisymmetric solution, it is clearly not satisfied in the interior of the star.