Toward an understanding of discrete ambiguities in truncated partial-wave analyses

Aug 22, 2017
13 pages
Published in:
  • Phys.Rev.C 96 (2017) 6, 065202
  • Published: Dec 7, 2017
e-Print:

Citations per year

2017201920212023202301234
Abstract: (APS)
It is well known that the observables in a single-channel scattering problem remain invariant once the amplitude is multiplied by an overall energy- and angle-dependent phase. This invariance is called the continuum ambiguity and acts on the infinite partial-wave set. It has also long been known that, in the case of a truncated partial wave set, another invariance exists, originating from the replacement of the roots of partial-wave amplitudes with their complex conjugate values. This discrete ambiguity is also known as the Omelaenko-Gersten-type ambiguity. In this paper, we show that for scalar particles, discrete ambiguities are just a subset of continuum ambiguities with a specific phase and thus mix partial waves, as the continuum ambiguity does. We present the main features of both continuum and discrete ambiguities and describe a numerical method which establishes the relevant phase connection.
  • 13.60.Le
  • 14.20.Gk
  • 11.80.Et