Multiparametric Families of Solutions of the Kadomtsev–Petviashvili-I Equation, the Structure of Their Rational Representations, and Multi-Rogue Waves

Sep 4, 2018
26 pages
Published in:
  • Theor.Math.Phys. 196 (2018) 2, 1174-1199
  • Published: Sep 4, 2018

Citations per year

0 Citations
Abstract: (Springer)
We construct solutions of the Kadomtsev–Petviashvili-I equation in terms of Fredholm determinants. We deduce solutions written as a quotient of Wronskians of order 2N. These solutions, called solutions of order N, depend on 2N−1 parameters. They can also be written as a quotient of two polynomials of degree 2N(N +1) in x, y, and t depending on 2N−2 parameters. The maximum of the modulus of these solutions at order N is equal to 2(2N + 1)2^{2}. We explicitly construct the expressions up to the order six and study the patterns of their modulus in the plane (x, y) and their evolution according to time and parameters.
  • Kadomtsev–Petviashvili equation
  • Fredholm determinant
  • Wronskian
  • lump
  • rogue wave
  • [1]

    On the stability of solitary waves in weakly dispersing media

    • B.B. Kadomtsev
      ,
    • V.I. Petviashvili
      • Sov.Phys.Dokl. 15 (1970) 539-541
  • [2]

    On the evolution of packets of water waves

    • M.J. Ablowitz
      ,
    • H. Segur
      • J.Fluid Mech. 92 (1979) 691-715
  • [3]

    Self-focusing of plane dark solitons in nonlinear defocusing media

    • D.E. Pelinovsky
      • Phys.Rev.E 51 (1995) 5016-5026
  • [4]

    Analytic solution of the two-dimensional Korteweg-de Vries (KdV) equation

    • V.S. Dryuma
      • Sov.Phys.JETP 19 (1973) 387-388
  • [5]

    Two-dimensional solitons of the Kadomtsev- Petviashvili equation and their interaction

    • S.V. Manakov
      ,
    • V.E. Zakharov
      ,
    • L.A. Bordag
      ,
    • V.B. Matveev
      • Phys.Lett. 63 (1977) 205-206
  • [6]

    Rational solutions of the Kadomtsev-Petviashvili equation and integrable systems of N particles on a line

    • I.M. Krichever
      • Funct.Anal.Appl. 12 (1978) 59-61
  • [7]

    Holomorphic bundles over Riemann surfaces and the Kadomtsev-Petviashvili equation: I

    • I.M. Krichever
      ,
    • S.P. Novikov
      • Funct.Anal.Appl. 12 (1978) 276-286
  • [8]

    Theta functions and non-linear equations

    • B.A. Dubrovin
      • Russ.Math.Surveys 36 (1981) 11-92
  • [9]

    Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles

    • I.M. Krichever
      • Funct.Anal.Appl. 14 (1980) 282-290
  • [14]

    New families of the explicit solutions of the Kadomtcev-Petviaschvily equation and their application to Johnson equation

    • V.B. Matveev
      ,
    • M.A. Salle
  • [15]

    New multisolitons of the Kadomtsev-Petviashvili equation

    • D.E. Pelinovsky
      ,
    • Y.A. Stepanyants
  • [16]

    Rational solutions of the Kadomtsev-Petviashvili hierarchy and the dynamics of their poles: I. New form of a general rational solution

    • D.E. Pelinovsky
      • J.Math.Phys. 35 (1994) 5820-5830
  • [17]

    Solutions to the time dependent Schrödinger and the Kadomtsev-Petviashvili equations

    • M.J. Ablowitz
      ,
    • J. Villarroel
      • Phys.Rev.Lett. 78 (1997) 570-573
  • [18]

    On the discrete spectrum of the nonstationary Schrödinger equation and multipole lumps of the Kadomtsev-Petviashvili I equation

    • J. Villarroel
      ,
    • M.J. Ablowitz
      • Commun.Math.Phys. 207 (1999) 1-42
  • [19]

    A novel class of solution of the non-stationary Schrödinger and the KP equations

    • M.J. Ablowitz
      ,
    • S. Chakravarty
      ,
    • A.D. Trubatch
      ,
    • J. Villaroel
      • Phys.Lett.A 267 (2000) 132-146
  • [20]

    On a family of solutions of the Kadomtsev-Petviashvili equation which also satisfy the Toda lattice hierarchy

    • G. Biondini
      ,
    • Y. Kodama
      • J.Phys.A 36 (2003) 10519-10536
  • [21]

    Young diagrams and N solitons solutions to the KP equation

    • Y. Kodama
      • J.Phys.A 37 (2004) 11169-11190
  • [22]

    Line soliton interactions of the Kadomtsev-Petviashvili equation

    • G. Biondini
      • Phys.Rev.Lett. 99 (2007) 064103
  • [24]

    Fredholm and Wronskian representations of solutions to the KPI equation and multi-rogue waves

    • P. Gaillard
      • J.Math.Phys. 57 (2016) 063505