A new thermo-desorption laser-heating setup for studying noble gas diffusion and release from materials at high temperatures

Dec 1, 2021
12 pages
Published in:
  • Rev.Sci.Instrum. 92 (2021) 12, 124102
  • Published: Dec 3, 2021
    and
  • Published: Dec 1, 2021

Citations per year

20222023202401
Abstract: (AIP)
A new heating and gas treatment line for Thermo-Desorption Spectrometry (TDS) of noble gases (He, Ne, Ar, Kr, and Xe) is presented. It was built with the primary objective to offer advanced temperature controls and capabilities while working in a cold environment. By choosing a high-power continuous wave laser as the heating source and using a proportional–integral–derivative controller system, TDS of noble gases can now be performed with fast and highly steady heating ramps (e.g., less than 1 °C deviation from the set point for ≤1 °C s−1 ramps). Sample temperature over 2000 °C can also routinely be reached, with limited heating of the sample support and the sample chamber, offering the possibility to have several samples awaiting in the ultra-high vacuum chamber. We also present the development efforts made to increase temperature homogeneity of the heated sample while limiting the contact with the sample holder. Recent results acquired with this TDS setup on krypton thermal diffusion in uranium dioxide (UO2) as a function of O2 additions are also presented as an application example.
  • [1]

    Thermal desorption mass spectrometer for mass metrology

    • Z. Silvestri
      ,
    • S. Azouigui
      ,
    • S. Bouhtiyya
      ,
    • S. Mac
      ,
    • M.D. Plimmer
    et al.
  • [2]

    Apparatus for low temperature thermal desorption spectroscopy of portable samples

    • S. Stuckenholz
      ,
    • C. Büchner
      ,
    • H. Ronneburg
      ,
    • G. Thielsch
      ,
    • M. Heyde
    et al.
  • [3]

    Highly hydrogen-sensitive thermal desorption spectroscopy system for quantitative analysis of low hydrogen concentration (∼1 × 1016 atoms/cm3) in thin-film samples

    • T. Hanna
      ,
    • H. Hiramatsu
      ,
    • I. Sakaguchi
      ,
    • H. Hosono
  • [4]

    New method for thermal desorption spectroscopy using field electron emission microscopy

    • D.S. Choi
      ,
    • J.H. Han
      ,
    • N.G. Park
      ,
    • K.S. Kim
      ,
    • C.N. Whang
  • [5]

    An apparatus for combined ion-beam assisted deposition and thermal desorption spectrometry

    • T.P. Huijgen
      ,
    • W.H.B. Hoondert
      ,
    • L.J. Seijbel
      ,
    • B.J. Thijsse
  • [6]

    A setup for thermodesorption measurements

    • A.A. Rusinov
      ,
    • Y.M. Gasparyan
      ,
    • S.F. Perelygin
      ,
    • A.A. Pisarev
      ,
    • S.O. Stepanov
    et al.
  • [7]

    Noble gases and microporous frameworks; from interaction to application

    • A. Soleimani Dorcheh
      ,
    • D. Denysenko
      ,
    • D. Volkmer
      ,
    • W. Donner
      ,
    • M. Hirscher
  • [8]

    The interaction of injected helium with lattice defects in a tungsten crystal

    • E.V. Kornelsen
  • [9]

    Thermal desorption and surface modification of He+ implanted into tungsten

    • Z. Fu
      ,
    • N. Yoshida
      ,
    • H. Iwakiri
      ,
    • Z. Xu
  • [10]

    Deuterium release from pores in tungsten created by 10 keV D3+ beam

    • E.D. Marenkov
      ,
    • I.V. Tsvetkov
      ,
    • A.A. Pisarev
      ,
    • Y.M. Gasparyan
      ,
    • A.A. Rusinov
  • [11]

    Defects in nonstoichiometric TiC studied by TDS

    • L.J. Seijbel
      ,
    • W.H.B. Hoondert
      ,
    • T.P. Huijgen
      ,
    • B.J. Thijsse
      ,
    • A. van Veen
  • [12]

    Helium interaction with vacancy-type defects created in silicon carbide single crystal

    • F. Linez
      ,
    • E. Gilabert
      ,
    • A. Debelle
      ,
    • P. Desgardin
      ,
    • M.-F. Barthe
  • [13]

    Helium behaviour in stoichiometric and hyper-stoichiometric UO2

    • Z. Talip
      ,
    • T. Wiss
      ,
    • E.-A. Maugeri
      ,
    • J.-Y. Colle
      ,
    • P.-E. Raison
    et al.
  • [14]

    Helium behavior in UO2 through low fluence ion implantation studies

    • P. Garcia
      ,
    • E. Gilabert
      ,
    • G. Martin
      ,
    • G. Carlot
      ,
    • C. Sabathier
    et al.
  • [15]

    Experimental determination of intragranular helium diffusion rates in boron carbide (B4C)

    • D. Horlait
      ,
    • D. Gosset
      ,
    • A. Jankowiak
      ,
    • V. Motte
      ,
    • N. Lochet
    et al.
  • [16]

    Experimental study of the diffusion of Xe and Kr implanted at low concentrations in UO2 and determination of their trapping mechanisms

    • M. Gérardin
      ,
    • E. Gilabert
      ,
    • D. Horlait
      ,
    • M.-F. Barthe
      ,
    • G. Carlot
  • [17]

    The influence of the microstructure evolution on the surface morphology in the annealing process of helium-implanted spinel

    • C. Jiang
      ,
    • J. Nicola
      ,
    • A. Declémy
      ,
    • E. Gilabert
      ,
    • M.-F. Beaufort
    et al.
  • [18]

    Behaviour of helium after implantation in molybdenum

    • C. Viaud
      ,
    • S. Maillard
      ,
    • G. Carlot
      ,
    • C. Valot
      ,
    • E. Gilabert
    et al.
  • [19]

    The influence of the microstructure evolution on the surface morphology in the annealing process of helium-implanted spinel

    • Y. Yang
      ,
    • C. Zhang
      ,
    • L. Zhou
      ,
    • B. Li
  • [20]

    Redistribution of implanted noble gas atoms by self-interstitials in molybdenum and nickel

    • A. van Veen
      ,
    • W.T.M. Buters
      ,
    • T.R. Armstrong
      ,
    • B. Nielsen
      ,
    • K.T. Westerduin
    et al.
  • [21]

    Hydrogen in metals studied by thermal desorption spectroscopy (TDS)

    • G. Hultquist
      ,
    • M.J. Graham
      ,
    • J.L. Smialek
      ,
    • B. Jönsson
  • [22]

    Evaluation of hydrogen trapping in high strength steels by thermal desorption spectroscopy

    • D. Pérez Escobar
      ,
    • K. Verbeken
      ,
    • L. Duprez
      ,
    • M. Verhaege
  • [23]

    Unit mechanisms of fission gas release: Current understanding and future needs

    • M. Tonks
      ,
    • D. Andersson
      ,
    • R. Devanathan
      ,
    • R. Dubourg
      ,
    • A. El-Azab
    et al.
  • [24]

    Effect of stoichiometry on diffusion of xenon in UO2

    • W. Miekeley
      ,
    • F.W. Felix
  • [25]

    Microstructural change and its influence on fission gas release in high burnup UO2 fuel

    • K. Une
      ,
    • K. Nogita
      ,
    • S. Kashibe
      ,
    • M. Imamura