AMBITION – comet nucleus cryogenic sample return

Jul 25, 2019
52 pages
Published in:
  • Exper.Astron. 54 (2022) 2-3, 1077-1128
  • Published: Jul 21, 2021
e-Print:

Citations per year

0 Citations
Abstract: (Springer)
We describe the AMBITION project, a mission to return the first-ever cryogenically-stored sample of a cometary nucleus, that has been proposed for the ESA Science Programme Voyage 2050. Comets are the leftover building blocks of giant planet cores and other planetary bodies, and fingerprints of Solar System’s formation processes. We summarise some of the most important questions still open in cometary science and Solar System formation after the successful Rosetta mission. We show that many of these scientific questions require sample analysis using techniques that are only possible in laboratories on Earth. We summarize measurements, instrumentation and mission scenarios that can address these questions. We emphasize the need for returning a sample collected at depth or, still more challenging, at cryogenic temperatures while preserving the stratigraphy of the comet nucleus surface layers. We provide requirements for the next generation of landers, for cryogenic sample acquisition and storage during the return to Earth. Rendezvous missions to the main belt comets and Centaurs, expanding our knowledge by exploring new classes of comets, are also discussed. The AMBITION project is discussed in the international context of comet and asteroid space exploration.
Note:
  • Submitted to Exper.Astron.
  • Space missions
  • Solar system
  • Comets
  • [2]

    Deep impact: Excavating comet tempel 1

    • MF A'Hearn
      ,
    • MJS Belton
      ,
    • WA Delamere
      ,
    • J. Kissel
      ,
    • KP Klaasen
    et al.
      • Science 310 (2005) 258-264
  • [3]

    EPOXI at Comet Hartley 2

    • MF A'Hearn
      ,
    • MJS Belton
      ,
    • WA Delamere
      ,
    • LM Feaga
      ,
    • D. Hampton
    et al.
      • Science 332 (2011) 1396
  • [4]

    Deuterium fractionation in protoplanetary disks

    • Y. Aikawa
      ,
    • E. Herbst
      • Astrophys.J. 526 (1999) 314-326
  • [5]

    The nature, origin and modification of insoluble organic matter in chondrites, the major source of Earth's C and N

    • CMOD Alexander
      ,
    • GD Cody
      ,
    • BT De Gregorio
      ,
    • LR Nittler
      ,
    • RM Stroud
      • Chemie der Erde / Geochemistry 77 (2017) 227
  • [6]

    67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio

    • K. Altwegg
      ,
    • H. Balsiger
      ,
    • A. Bar-Nun
      ,
    • JJ Berthelier
      ,
    • A. Bieler
    et al.
      • Science 347 (2015) 1261952
  • [7]

    Prebiotic chemicals-amino acid and phosphorus-in the coma of comet 67P/Churyumov-Gerasimenko

    • K. Altwegg
      ,
    • H. Balsiger
      ,
    • A. Bar-Nun
      ,
    • JJ Berthelier
      ,
    • A. Bieler
    et al.
      • Sci.Adv. 2 (2016) e1600285-e1600285
  • [8]

    D2O and HDS in the coma of 67P/Churyumov-Gerasimenko

    • K. Altwegg
      ,
    • H. Balsiger
      ,
    • JJ Berthelier
      ,
    • A. Bieler
      ,
    • U. Calmonte
    et al.
      • Philos. Trans. Royal Soc. London Ser. A 375 (2017) 20160253
  • [9]

    Organics in comet 67P - a first comparative analysis of mass spectra from ROSINA-DFMS, COSAC and Ptolemy

    • K. Altwegg
      ,
    • H. Balsiger
      ,
    • JJ Berthelier
      ,
    • A. Bieler
      ,
    • U. Calmonte
    et al.
      • Mon.Not.Roy.Astron.Soc. 469 (2017) S130-S141
  • [10]

    Evidence of ammonium salts in comet 67P as explanation for the nitrogen depletion in cometary comae

    • K. Altwegg
      ,
    • H. Balsiger
      ,
    • N. Hänni
      ,
    • M. Rubin
      ,
    • M. Schuhmann
    et al.
      • Nature Astron. 4 (2020) 533-540
  • [12]

    Physical processes in protoplanetary disks

    • PJ Armitage
      • Saas-Fee Adv. Course 45 (2019) 1
  • [13]

    Tensile strength of 67P/Churyumov-Gerasimenko nucleus material from overhangs

    • N. Attree
      ,
    • O. Groussin
      ,
    • L. Jorda
      ,
    • D. Nébouy
      ,
    • N. Thomas
    et al.
      • Astron.Astrophys. 611 (2018) A33
  • [14]

    Constraining models of activity on comet 67P/Churyumov-Gerasimenko with Rosetta trajectory, rotation, and water production measurements

    • N. Attree
      ,
    • L. Jorda
      ,
    • O. Groussin
      ,
    • S. Mottola
      ,
    • N. Thomas
    et al.
      • Astron.Astrophys. 630 (2019) A18
  • [15]

    Challenges of the rosetta sample return mission

    • A. Atzei
      ,
    • M. Hechler
      ,
    • G. Schwehm
      ,
    • R. Mitchell
      • Adv.Space Res. 14 (1994) 197-205
  • [17]

    Detection of complex organic molecules in a prestellar core: a new challenge for astrochemical models

    • A. Bacmann
      ,
    • V. Taquet
      ,
    • A. Faure
      ,
    • C. Kahane
      ,
    • C. Ceccarelli
      • Astron.Astrophys. 541 (2012) L12
  • [19]

    Carbon-rich dust in comet 67P/Churyumov-Gerasimenko measured by COSIMA/Rosetta

    • A. Bardyn
      ,
    • D. Baklouti
      ,
    • H. Cottin
      ,
    • N. Fray
      ,
    • C. Briois
    et al.
      • Mon.Not.Roy.Astron.Soc. 469 (2017) S712-S722
  • [20]

    MarcoPolo-R near earth asteroid sample return mission

    • MA Barucci
      ,
    • AF Cheng
      ,
    • P. Michel
      ,
    • LAM Benner
      ,
    • RP Binzel
    et al.
      • Exper.Astron. 33 (2012) 645-684
  • [21]

    Detection of exposed H2O ice on the nucleus of comet 67P/Churyumov-Gerasimenko. as observed by Rosetta OSIRIS and VIRTIS instruments

    • MA Barucci
      ,
    • G. Filacchione
      ,
    • S. Fornasier
      ,
    • A. Raponi
      ,
    • JDP Deshapriya
    et al.
      • Astron.Astrophys. 595 (2016) A102
  • [22]

    The internal structure of Jupiter family cometary nuclei from Deep Impact observations: The "talps" or "layered pile" model

    • MJS Belton
      ,
    • P. Thomas
      ,
    • J. Veverka
      ,
    • P. Schultz
      ,
    • MF A'Hearn
    et al.
      • Icarus 187 (2007) 332-344
  • [23]

    Diffuse interstellar bands carriers and cometary organic material

    • JL Bertaux
      ,
    • R. Lallement
      • Mon.Not.Roy.Astron.Soc. 469 (2017) S646-S660
  • [24]

    The census of interstellar complex organic molecules in the Class I hot corino of SVS13-A

    • E. Bianchi
      ,
    • C. Codella
      ,
    • C. Ceccarelli
      ,
    • F. Vazart
      ,
    • R. Bachiller
    et al.
      • Mon.Not.Roy.Astron.Soc. 483 (2019) 1850-1861
  • [25]

    Capabilities of Philae, the Rosetta lander

    • J. Biele
      ,
    • S. Ulamec
      • Space Sci.Rev. 138 (2008) 275-289