Defect evolution under intense electronic energy deposition in uranium dioxide

Mar 7, 2023
Published in:
  • J.Nucl.Mater. 578 (2023) 154375
  • Published: Mar 7, 2023
    and
  • Published: May, 2023

Citations per year

0 Citations
Abstract: (Elsevier B.V.)
•The coupled influence of the intense electronic and nuclear energy deposition on the defect production were investigated in UO2.•The evolution of local disorder (evaluated by Raman) and the stress level (determined by XRD) on fluorite-type oxides ceramics under the effect of intense electronic excitation was followed.•A possible synergetic effect between the pre-existing defects and those generated by intense electronic ionizations was revealed. The coupled effects of nuclear and electronic energy losses were investigated in uranium dioxide (UO2). Single and sequential ion irradiations were carried out with 92 MeV Xe ions and 0.9 MeV I ions. Raman spectroscopy and X-ray diffraction analyses were combined with the inelastic thermal spike (iTS) model to investigate the effect of electronic ionizations on the ballistic damage. It appears that the high-energy ions induce a significant change in the defect distribution with an amplitude that depends on the level of pre-existing disorder. This modification essentially results in an acceleration of the transformation from the dislocation loops to the dislocation lines, a process that is accompanied by a stress relaxation. Surprisingly, with the fluence increase of 92 MeV Xe ions, the stress starts to increase again, highlighting a possible synergetic effect between the pre-existing defects and those generated by the 92 MeV Xe ions irradiation.
  • UO
  • Swift heavy ions
  • Ion irradiation
  • Raman
  • XRD
  • Nuclear ceramic
  • [1]
    • K. Ohhara
      ,
    • N. Ishikawa
      ,
    • S. Sakai
      ,
    • Y. Matsumoto
      ,
    • O. Michikami
    et al.
      • Nucl.Instrum.Meth.B 267 (2009) 6, 973-975
  • [2]
    • S. Moll
      ,
    • L. Thomé
      ,
    • L. Vincent
      ,
    • F. Garrido
      ,
    • G. Sattonnay
    et al.
      • J.Appl.Phys. 105 (2009) 2, 023512
  • [3]
    • N. Ishikawa
      ,
    • T. Sonoda
      ,
    • T. Sawabe
      ,
    • H. Sugai
      ,
    • M. Sataka
      • Nucl.Instrum.Meth.B 314 (2013) 180-184
  • [4]
    • L. Vincent
      ,
    • L. Thomé
      ,
    • F. Garrido
      ,
    • O. Kaitasov
      ,
    • F. Houdelier
      • J.Appl.Phys. 104 (2008) 11, 114904
  • [5]
    • T. Wiss
      ,
    • H. Matzke
      ,
    • C. Trautmann
      ,
    • M. Toulemonde
      ,
    • S. Klaumünzer
      • Nucl.Instrum.Meth.B 122 (1997) 3, 583-588
  • [6]
    • W.F. Cureton
      ,
    • R.I. Palomares
      ,
    • J. Walters
      ,
    • C.L. Tracy
      ,
    • C.-H. Chen
    et al.
      • Acta Mater. 160 (2018) 47-56
  • [7]
    • N. Ishikawa
      ,
    • T. Sonoda
      ,
    • Y. Okamoto
      ,
    • T. Sawabe
      ,
    • K. Takegahara
    et al.
      • J.Nucl.Mater. 419 (2011) 1, 392-396
  • [8]
    • K. Hayashi
      ,
    • H. Kikuchi
      ,
    • K. Fukuda
      • J.Nucl.Mater. 248 (1997) 191-195
  • [9]
    • F. Garrido
      ,
    • C. Choffel
      ,
    • J.C. Dran
      ,
    • L. Thome
      ,
    • L. Nowicki
    et al.
      • Nucl.Instrum.Meth.B 127-128 (1997) 634-638
  • [10]
    • K. Yasuda
      ,
    • M. Etoh
      ,
    • K. Sawada
      ,
    • T. Yamamoto
      ,
    • K. Yasunaga
    et al.
      • Nucl.Instrum.Meth.B 314 (2013) 185-190
  • [11]
    • C. Onofri
      ,
    • C. Sabathier
      ,
    • C. Baumier
      ,
    • C. Bachelet
      ,
    • H. Palancher
    et al.
      • J.Nucl.Mater. 512 (2018) 297-306
  • [12]
    • L.-F. He
      ,
    • M. Gupta
      ,
    • C.A. Yablinsky
      ,
    • J. Gan
      ,
    • M.A. Kirk
    et al.
      • J.Nucl.Mater. 443 (2013) 1, 71-77
  • [13]
    • L.F. He
      ,
    • J. Pakarinen
      ,
    • M.A. Kirk
      ,
    • J. Gan
      ,
    • A.T. Nelson
    et al.
      • Nucl.Instrum.Meth.B 330 (2014) 55-60
  • [14]
    • C. Onofri
      ,
    • C. Sabathier
      ,
    • C. Baumier
      ,
    • C. Bachelet
      ,
    • H. Palancher
    et al.
      • J.Nucl.Mater. 482 (2016) 105-113
  • [16]
    • L.F. He
      ,
    • B. Valderrama
      ,
    • A.R. Hassan
      ,
    • J. Yu
      ,
    • M. Gupta
    et al.
      • J.Nucl.Mater. 456 (2015) 125-132
  • [17]
    • M. Bricout
      ,
    • G. Gutierrez
      ,
    • C. Baumier
      ,
    • C. Bachelet
      ,
    • D. Drouan
    et al.
      • J.Nucl.Mater. 554 (2021) 153088
  • [18]
    • M. Bricout
      ,
    • C. Onofri
      ,
    • A. Debelle
      ,
    • Y. Pipon
      ,
    • R.C. Belin
    et al.
      • J.Nucl.Mater. 531 (2020) 151967
  • [19]
    • G. Gutierrez
      ,
    • D. Gosset
      ,
    • M. Bricout
      ,
    • C. Onofri
      ,
    • A. Debelle
      • J.Nucl.Mater. 519 (2019) 52-56
  • [20]
    • G. Gutierrez
      ,
    • M. Bricout
      ,
    • F. Garrido
      ,
    • A. Debelle
      ,
    • L. Roux
    et al.
      • J.Eur.Ceramic Soc. 42 (2022) 14, 6633-6641
  • [21]
    L. Lynds, W.A. Young, J.S. Mohl, G.G. Libowitz, X-Ray and density study of nonstoichiometry in uranium oxides, Nonstoichiometric Compounds, AMERICAN CHEMICAL SOCIETY1963, pp. 58-65
    • [22]
      • G. Leinders
        ,
      • T. Cardinaels
        ,
      • K. Binnemans
        ,
      • M. Verwerft
        • J.Nucl.Mater. 459 (2015) 135-142
    • [23]
      • S. Pellegrino
        ,
      • P. Trocellier
        ,
      • S. Miro
        ,
      • Y. Serruys
        ,
      • É. Bordas
      et al.
        • Nucl.Instrum.Meth.B 273 (2012) 213-217
    • [24]
      • J.-P. Crocombette
        ,
      • C. Van Wambeke
        • EPJ Nucl. Sci. Technol. 5 (2019) 7
    • [25]
      • D. Simeone
        ,
      • G. Baldinozzi
        ,
      • D. Gosset
        ,
      • S.L. Caer
        ,
      • J.F. Bérar
        • Thin Solid Films (2013) 9-13