Nonfactorizable contributions in $B^0 \to D^+_s D_s$ and $B^0_s \to D^+ D$ decays

J.O. Eega, S. Fajferbc, and A. Hiortha

a Department of Physics, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo, Norway
b J. Stefan Institute, Jamova 39, P.O. Box 3000, 1001 Ljubljana, Slovenia
c Department of Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

Abstract

The decay amplitudes for $B^0 \to D^+_s D_s$ and $B^0_s \to D^+ D$ have no factorizable contributions. We suggest that dominant contributions to the decay amplitudes arise from two chiral loop contributions and one soft gluon emission contribution. Then we determine branching ratios $BR(B^0 \to D^+_s D_s) \approx 7 \times 10^{-5}$ and $BR(B^0_s \to D^+ D) \approx 1 \times 10^{-3}$.

Numerous experimental data coming from BaBar, Belle and Tevatron on B meson decays stimulate many studies of their decay mechanism. Through decades the factorization assumption has been used in calculations of the decay amplitudes. Recently, it has been shown [1] that some classes of B-meson decay amplitudes exhibit QCD factorization. This means that, up to $s = \langle m_{B^0} \rangle$ (calculable) and $Q_{CD} \approx m_b$ (not calculable), their amplitudes factorize into the product of two matrix elements of weak currents. Typically, the decay amplitudes which factorize in this sense are $B \to D$ and $B \to K$ where the energy release is big compared to the light meson masses. However, for decays where the energy release is of order 1 GeV, QCD factorization is not expected to hold. Here we discuss the dominant contributions in $B^0 \to D^+_s D_s$ and $B^0_s \to D^+ D$ [2]. At quark level these decays occur through the annihilation mechanism $b \to c \bar{c}$ and $b \to b \bar{c}$, respectively (Fig. 1). However, within the factorized limit the annihilation mechanism will give a zero amplitude due to current conservation, as for the $D^0 \to K^0 \bar{K}^0$ decay [3]. The axial part of the weak current might lead to non-zero factorized contributions if one of D-mesons in the final state is a vector meson D^*. Such contributions are proportional to the numerically small Wilson coefficient C_1, which we will neglect in our analysis. In contrast, the typical factorized decay modes which proceed through the spectator mechanism, say $B^0 \to D^+ D_s$, are proportional to the numerically larger Wilson coefficient C_2. If one or both of charm mesons

Contributed Paper for LPO 3

1
in this decay are vector mesons, such amplitudes will give non-factorizable chiral loop contributions to the process $B^0 \rightarrow D^+_s D_s$ due to K^0-exchange. We determine these chiral loop contributions.

There are also non-factorizable contributions due to soft gluon emission. Such contributions can be calculated in terms of the (lowest dimension) gluon condensate within a recently developed Heavy Light Chiral Quark Model (HL QM) [9], which is based on Heavy Quark Effective Theory (HQET) [5]. This model has been applied to processes with B-mesons in [6,7]. The gluon condensate contributions are also proportional to the Wilson coefficients C_i. We follow the standard approach [3] for non-leptonic decays where one constructs an effective Lagrangian L_W in terms of quark operators multiplied by Wilson coefficients. All information of the short distance (SD) loop effects above a renormalization scale of order m_b, within Heavy Quark Effective Theory (HQET) [5], the effective Lagrangian L_W can be evolved down to the scale $\Lambda' = \Lambda$ [9,10].

The use of factorization is illustrated in the $B^0 \rightarrow D^+_s D_s$ decay:

$$h_{D_s} D^+_s j_W \bar{B}^0 j_F = (C_2 + \frac{1}{N_c} C_1) h_{D_s} D^+_s \bar{B}^0,$$ \hspace{1cm} (1)

The coefficients $C_{1,2}$ are Wilson coefficients for the operators containing the product of two left-handed currents. In our notation $C_1 = \frac{6}{G_F} V_{cb} V_{cs} a_1$, where the a_i are dimensionless, G_F is the Fermi coupling, V_{ij} are CKM parameters. Numerically, $a_1 = 10^{-1}$ and $a_2 = 1$ at the scale $\Lambda = m_b$, and $a_1 j^0 (3)$ and $a_2 j^0 (1)$ at 1 GeV [9,10]. Penguin operators may also contribute, but have rather small Wilson coefficients.

The factorized amplitude for $B^0 \rightarrow D^+_s D_s$ is presented in Fig. 1, and is given by

$$h_{D_s} D^+_s j_W \bar{B}^0 j_F = 4(C_1 + \frac{1}{N_c} C_2) h_{D_s} D^+_s \bar{B}^0 i_d 5 c \bar{d} h_{D_s} D^+_s \bar{B}^0 i_F;$$ \hspace{1cm} (2)

Unless one or both of the D-mesons in the final state are vector mesons, this matrix element is zero due to current conservation:

$$h_{D_s} D^+_s \bar{B}^0 i_d 5 c \bar{d} h_{D_s} D^+_s \bar{B}^0 i_F = 0;$$ \hspace{1cm} (3)

Our approach is based on the use of bosonized currents [2] and by using them we write down the amplitudes for $B^0 \rightarrow D^+_s D_s$. To calculate the chiral loop amplitudes we need the factorized amplitudes for $B^0 \rightarrow D^+_s D_s$ and $B^0 \rightarrow D^+_s D_s$, which proceed through the spectator mechanism as in Fig. 3. In this case the leading chiral coupling results from the coupling between a pseudoscalar meson H, vector meson V, and a light pseudoscalar $M (= \eta K)$, denoted by g. After use of bosonized currents [2], we obtain the following chiral loop amplitude for the process $B^0 \rightarrow D^+_s D_s$ from Fig. 3:

$$A(B^0 \rightarrow D^+_s D_s) = (V_{cd} = V_{cs}) A(B^0 \rightarrow D^+_d D_s) R;$$ \hspace{1cm} (4)

where $A(B^0 \rightarrow D^+_d D_s)$ stands for the factorized amplitude for the process $B^0 \rightarrow D^+_d D_s$ and the quantity R is a sum of contributions from the left and right parts of Fig. 3.
Figure 1: Factorized contribution for $\overline{B}^0 \rightarrow D_s^+ D_s$ through the annihilation mechanism, which give zero contributions if both D_s^+ and D_s are pseudoscalars. The double dashed lines represent heavy mesons, the double lines represent heavy quarks, and the single lines light quarks.

Figure 2: Factorized contribution for $\overline{B}^0 \rightarrow D_s^+ D_s$ through the spectator mechanism, which does not exist for decay mode $\overline{B}^0 \rightarrow D_s^+ D_s$ we consider in this paper.

3 respectively [2]. In the \overline{MS} scheme we obtained

$$R = \frac{m_R^2}{(4\pi f)^2} g_A^2 \frac{(! + 1)}{(! + 1)} \ln \frac{m_R^2}{\Lambda^2} \frac{1}{1} ;$$

which means that the amplitude gets an imaginary part. Numerically, we end [2]:

$$R = 0.12 \pm 0.26i.$$

The genuine nonfactorizable part for $\overline{B}^0 \rightarrow D_s^+ D_s$ can, by means of Fierz transformations and identities for the product of two color matrices, be written in terms of colored currents

$$\not{h} D_s \not{J}_W \not{B}^0 i_{NF} = 8 C_2 \not{h} D_s \not{J}(c_L \not{t}^c b_L) (c_L \not{t}^c b_L) \not{B}^0 i ;$$
With our approach, this amplitude is written in a quasi-factorized way in terms of matrix elements of colored currents:

\[h D_s^+ D_s^- \mathcal{J}_W \overline{B^0} \mathcal{G}^F_{W} = 8 C_2 h D_s^+ D_s^- \mathcal{O}_L t^6 \mathcal{G}_L t^b \mathcal{G} \overline{B^0} i; \]

where a \(G \) in the bra-kets symbolizes emission of one gluon (from each current) as visualized in Fig. 4. In order to calculate the matrix elements in [3], we have used [2] the Heavy Light Chiral Quark Model (HLQM) recently developed in [4], which incorporates emission of soft gluons modeled by a gluon condensate. Then we defined a quantity \(R_G \) for the gluon condensate amplitude analogously to \(R \) in [4] and [5] for chiral loops. Numerically, we determined [2] that the ratio between the two amplitudes is

\[R_G' = 0.055 + 0.16i; \]

which is of order one third of the chiral loop contribution in eq. [3].

Adding the amplitudes \(R \) and \(R_G \) and multiplying with the Wilson coefficient [2,10] \(a_2' = 1.33 + 0.2i \), we obtain the quantity:

\[R_T a_2 (R + R_G) = 0.26 + 0.11i; \]

We have found that the amplitude for \(\overline{B^0} \to D_s^+ D_s^- \) is of order 15\% 20\% of the factorizable amplitude for \(\overline{B^0} \to D_s^+ D_s^- \), before the different CKM factors are taken into account.
Finally, we predict [2] that the branching ratios are

\[\text{BR} \left(\bar{B}_d^0 \rightarrow D_s^+ D_s \right) \sim 7 \times 10^{-5} ; \quad \text{BR} \left(\bar{B}_s^0 \rightarrow D^+ D \right) \sim 1 \times 10^{-3} ; \quad (12) \]

The current searches at BaBar and Belle might soon result in the limit on the rate \(\bar{B}_0^0 \rightarrow D^+_s D_s \). However, the \(\bar{B}_s^0 \rightarrow D^+ D \) mode will be accessible at Tevatron and later at LHC.

The research of S.F. was supported in part by the Ministry of Education, Science and Sport of the Republic of Slovenia. J.D.E. is supported in part by the Norwegian research council and by the European Union RTN network, Contract No. HPRN-CT-2002-00311 (EUR IDECE).

References