Gaining experimental insight on the quantum-gravity realm is very challenging, because most effects are expected to occur on the ultra-high Planck scale \(m_P \) (\(\approx 10^{19} \) eV), and leave only minute traces on processes we can access experimentally. But thanks to a large and determined effort made over the last decade [3,4,5,6,7], we do have now at least a few research lines in “quantum-gravity phenomenology” [14], where it is established that quantum properties of gravity and/or spacetime structure could be investigated with the desired Planck-scale sensitivity. Previously progress in this direction had been obstructed by the extreme mathematical complexity of the most promising theories of quantum gravity, resulting in a debate on quantum gravity that was confined at the level of comparison of mathematical and conceptual features, without the ability to control the mathematical aspects well enough to obtain robust derivations of the physical implications of the different scenarios.

At least for one aspect of the quantum-gravity problem, the one that concerns the possibility that spacetime itself might have to be quantized, the nature of the debate started to change in the second half of 1990s when it was established that a general implication of spacetime quantization is a modification of the classical-spacetime dispersion relation between energy \(E \), momentum \(p \), and mass \(m \) of a macroscopic particle with mass \(m \). In the nonrelativistic limit \((p \ll m) \), which is here or interest, this dispersion relation should take the form

\[
E \approx p + \frac{p^2}{2m} \left(1 - \frac{m}{2m_P} \right) \left(1 + \frac{p^2}{m^2} \right) + \frac{p^3}{m} \ ; \quad \text{(1)}
\]

working in units with speed-of-light constant set to 1, and including only terms at leading order in the (inverse of the) Planck scale.

The nonobservation of less parametric effects [1,2,3] should (when dier from zero) have values roughly of order one, so that the new effects are introduced in some neighborhood of the Planck scale. Evidence that at least some of these parameters should be non-zero has been found most notably in Loop Quantum Gravity [5,6,7], and in particular the framework introduced in Refs. [8,9], which was inspired by Loop Quantum Gravity, produces a term linear in \(p \) in the nonrelativistic limit (the effect here parametrized by \(\lambda \)). Other de nite proposals for the parameters [1,2,3] have emerged [10,11,12,13] from the quantum-gravity approach based on “noncomutative geometric” [14], and the associated research area that contain plates deforming actions of special relativity such that one could have an observer-independent maximum value of frequency or minimum value of wavelength. The two most studied deformation scenarios are the one rst introduced in Ref. [15], whose leading-order form is

\[
E = \frac{p^2}{m^2 + p^2} \left(M_P \frac{p^2}{2m} \right) + \frac{p^2}{M_P} \ ; \quad \text{(2)}
\]

and the one rst introduced in Ref. [16], whose leading-
Interestingly both of these scenarios have the same behaviour in the nonrelativistic limit, dominated by a $p^2=\mathcal{M}_P$ term of the type here parametrized with λ.

In addition to these examples where some ethereal definite is expected for the parameters here of interest, which characterize the dispersion relation in the nonrelativistic limit, there is also a quantum-gravity literature providing motivation for studies of the dispersion relation from a broader perspective, but often within a formalism that is not understood well enough to establish the functional dependence of the correction on momentum. Nonetheless, many authors (see, e.g., Ref. [12] and references therein) have argued that our best chance of having a first level of experimental characterization of the quantum-gravity realm is through attempts to gain insight on the parameters of the dispersion relation.

Unfortunately, as usual in quantum-gravity research, the theoretically-favoured range of values of the parameters of the dispersion relation translates into a range of possible magnitudes of the effects that is extremely challenging. If the Planck scale is the characteristic scale of quantum-gravity effects then one expects that parameters such as $\lambda, \lambda_0, \lambda_1$ should indeed take (positive or negative) values that are close to 1, and then, as a result of the overall factor $1-\mathcal{M}_P$, the effects are terribly small [10].

Some recent semi-heuristic renormalization-group arguments (see, e.g., Refs. [13, 20] and references therein), have encouraged the intuition that the quantum-gravity scale might be somewhat smaller than the Planck scale, plausibly even 3 orders of magnitude smaller (so that it could coincide with the "grand uni-cation scale" which appears to be relevant in particle physics). This would correspond to an estimate of parameter values such as $\lambda, \lambda_0, \lambda_1$ plausibly as 10^{-12}, but usually even with this possible gain of three orders of magnitude any hope of detectability remains extremely distant.

It was therefore rather exciting for me any quantum-gravity researchers when it started to emerge that certain observations in astrophysics could provide a \mathcal{M}_P-scale sensitivity for some quantum-gravity scenarios [1, 2, 3, 4, 5, 6]. However, these studies only establish meaningful bounds on scenarios with relatively strong ultra-relativistic corrections, such as the proposal of Ref. [6] (Eq. (2)) which produces a term of order $p^2=\mathcal{M}_P$ in the ultrarelativistic regime. But for example in the ultrarelativistic limit of the models of Ref. [6] (Eq. (3)) and Ref. [3] the effects are too small to matter.

Our main objective here is to show that cold-atom experiments can be used to establish meaningful bounds on the parameters and that characterize the nonrelativistic limit of the dispersion relation. The ultra-high levels of accuracy achievable with atom interferometry have been already exploited extensively in many areas of physics, including precision measurements of gravity [24], gravity gradients [25], and rotation of the Earth [26], and also tests of Einstein’s weak equivalence principle [27, 28], tests of Newton’s law at short distances [29], and measurement of fundamental physical constants [29, 30]. Clearly for our purposes it is very significant that these remarkable accuracy levels have been reached in studies of nonrelativistic atoms.

The measurement strategy we here propose is applicable to measurements of the recoil frequency ω of atoms with the experimental setups involving one or more two-photon Raman transitions [24, 31, 32]. Let us initially set aside the possibility of Planck-scale effects, and discuss the recoil of an atom in a two-photon Raman transition from the perspective adopted in Ref. [32], which provides a convenient starting point for the Planck-scale generalization we shall discuss later. One can in part measure an atom through a process involving absorption of a photon of frequency ω and a stimulated emission, in the opposite direction, of a photon of frequency ω. The frequency is computed taking into account a resonance frequency of the atom and the recoil momentum of the atom acquires recoil upon absorption of the photon: $\omega + \hbar (\mathcal{M}_P^2-2\mathcal{M}_P)$ on the other hand a $\mathcal{M}_P=0$ must be such to decouple the atom and impart it additional momentum: $\omega + \hbar (\mathcal{M}_P^2-2\mathcal{M}_P)$. Through this analysis one establishes that by measuring in cases (not uncommon) on where and p can be accurately determined, one actually measures $h=m$ for the atom:

$$\frac{2}{\omega} = \hbar m$$

This result has been confirmed experimentally with remarkable accuracy. A powerful way to illustrate this success is provided by comparing the results of atom recoil measurements of ω and of mass measurements of the Rydberg constant, the Rydberg constant and the mass of the electron, m_e, in the following way [32]: $2 = 2 \mathcal{R} \frac{m_e}{m}$. Therefore according to Eq. (4) one should have

$$\frac{2}{\omega} = \frac{2}{\mathcal{R}} \frac{m_e}{m}$$

where m_e is the mass of the electron and m is the mass of the atom used in this measurement $=\hbar (\mathcal{M}_P^2-2\mathcal{M}_P)$. The outcomes of atom recoil mass measurements, such as the ones with Caesium reported in Ref. [32], are consistent with Eq. (4) with the accuracy of a few parts in 10^9.

$$E = \frac{p}{m^2 + p^2} + \frac{p^3}{\mathcal{M}_P m^2 + p^2}$$

$$\frac{2}{\omega} = \frac{2}{\mathcal{R}} \frac{m_e}{m}$$
The fact that Eq. (4) has been verified to such a high degree of accuracy proves to be very valuable for our purposes as we tend that modification of the dispersion relation require a modification of Eq. (4). Our derivation can be summarized briefly by observing that the logical steps described above for the derivation of Eq. (4) establishes the following relationship

\[E(p + h + m) = E(p) + E(2h + p) - E(p); \]

and therefore Planck-scale modulations of the dispersion relation, parametrized in Eq. (4), would act through the modified equation of \(E(2h + p) - E(p) \), which comprises the energy of the atom when it carries a momentum \(p + 2h \).

Since our main objective here is to expose sensitivity to a meaningful value of the parameter \(x \), let us focus on the Planck-scale corrections with coefficient \(x \). In this case the relation (4) is replaced by

\[\frac{2(h + p)}{m} + \frac{m}{M_p} \]

and in turn in place of Eq. (5) one has

\[\frac{m}{2M_p} h + p + \frac{m}{h + p} = \frac{m}{2R_1 m u} \]

We have arranged the left-hand side of this equation placing emphasis on the fact that our quantum-gravity correction is as usual penalized by the inevitable Planck-scale suppression (the ultramall all factor \(m = M_p \)), but in this specific context it also receives a sizeable boost by the large hierarchy of energy scales \(m = (h + p) \), which in typical experiments of the type here of interest can be [27,35,36] of order \(10^{16} \).

This amplification of \(10^{16} \) turns out to be sufficient for our purposes: one easily notes that, in light of our result (7b), the mentioned Caesium-atom recoil measurements\(^{2} \) reported in Ref. [24], also exploiting the high precision of a detector of \(2 \) recently obtained from electron-atom aly measurements [33], allow us to determine that \(x = 18 \pm 2 \). From this we derive the main result: we are here reporting which is the bound \(6 \sigma < 1 < 2 \sigma \), established at the 95% confidence level. This shows that the cold-atom experiments we here considered can be described as the first example of controlled laboratory experiments probing the form of the dispersion relation (at least in one of the directions of interest) with sensitivity that is meaningful from a Planck-scale perspective. We are actually already excluding a very substantial portion of the range of values of \(x \) that could be natural from a quantum-gravity perspective, which, for reasons we briefly reviewed above, goes from \(j \) = 1 to \(j \) = 10^6.

1 The Rubidium-atom recoil measurements reported in Ref. [24] determine \(x = 2 + (p + h) \) with accuracy comparable to the Caesium atom experiments of Ref. [33]. However, in the setup of Ref. [24] the Rubidium atoms had momentum \(p \) signiﬁcantly higher than for the Caesium atoms in Ref. [33], and, as a consequence of the speciﬁc dependence on \(p \) of our result, it turns out that the Caesium measurements lead to a signiﬁcantly lower stringent limit \(x \) than the Rubidium measurements.
ing their ultrarelativistic behaviour, but on the contrary for the scenario of Ref. [19] (Eq. 3) the only way to establish meaningful bounds is by investigating the non-relativistic limit.

Following the same steps of the analysis we performed above for the correction term with coe cient 1, it is easy to verify that the correction term with coe cient 2 would produce the following modification of Eq. 3:

\[
\frac{1}{2} \left(1 + \frac{p^2}{u^2} \right) m_e m_u = \frac{2}{Z_R} m_e m_u \quad (8)
\]

And in this case the experimental results reported in Ref. [24] allowed us to establish that \(3 \times 10^2 \lesssim \frac{p}{u} \lesssim 1.5 \times 10^2 \). This bound is still six orders of magnitude above even the most optimistic quantum-gravity estimates. But it is a bound that still carries some significance in the broader realm of Lorentz-symmetry investigations. According to standard quantum-spacetime argument, bounds on parameters such as \(\frac{p}{u} \) at the level of \(j j < 10^9 \) amout to probing spacetime structure down to length scales of order \(10^{-26} m \). Therefore, this is not enough for quantum gravity according to the prevailing consensus, still represents remarkable short distance scales from a broader perspective.

Moreover, our limit on \(\frac{p}{u} \) at the level \(j j < 10^9 \) indeed also amout to the best limit on the scenario for deformation of Lorentz symmetry introduced in Ref. [19], since in the non-relativistic limit the parameter \(\frac{p}{u} \) is related to \(\frac{p}{u} \) by \(\frac{p}{u} = 4 \). Previous attempts to constrain the parameter \(\frac{p}{u} \) in the non-relativistic limit of Eq. [3], and did not go beyond [38, 39] sensitivities at the level \(j j < 10^{24} \).

In light of the remarkable space of in preparation of cold-atom experiments over the last 20 years, we expect that the sensitivities here established might be in proved upon in the near future. This will most likely translate into more stringent bounds, but, particularly considering the values of \(\frac{p}{u} \) being probed, should also be viewed as a (slim but valuable) chance for a striking discovery. We therefore feel that our analysis should motivate a vigorous effort on the quantum-gravity side aimed at overcoming the mentioned technical difficulties that presently obstruct the derivation of \(m_0 \) detailed quantitative predictions in some of the relevant theoretical frameworks.

Acknowledgments

G.A.C. is supported in part by grant RFP2-08-02 from The Foundational Questions Institute (fqi.oxo). C.L. acknowledges support from the Gemini Research Foundation and the Centre for Quantum Engineering and Space-Time Research QUEST.
