Microscopic analysis of fusion hindrance in heavy nuclear systems
Mar 11, 201514 pages
Published in:
- Phys.Rev.C 91 (2015) 6, 064607
- Published: Jun 10, 2015
e-Print:
- 1503.03437 [nucl-th]
Citations per year
Abstract: (APS)
Background: Heavy-ion fusion reactions involving heavy nuclei at energies around the Coulomb barrier exhibit fusion hindrance, where the probability of compound nucleus formation is strongly hindered compared with that in light- and medium-mass systems. The origin of this fusion hindrance has not been well understood from a microscopic point of view. Purpose: I analyze the fusion dynamics in heavy systems by a microscopic reaction model in order to understand the origin of the fusion hindrance. Method: I employ the time-dependent Hartree-Fock (TDHF) theory as a microscopic reaction model. I extract the nucleus-nucleus potential and energy dissipation by the method combining TDHF dynamics of the entrance channel of fusion reactions with a one-dimensional Newton equation including a dissipation term. Then, I analyze the origin of the fusion hindrance using the properties of the extracted potential and energy dissipation. Results: I obtain finite extra-push energies for heavy systems from TDHF simulations, which agree with experimental observations. Extracted nucleus-nucleus potentials show monotonic increase as the relative distance of two nuclei decreases, which induces the disappearance of an ordinary barrier structure of the nucleus-nucleus potential. This property is different from those in light- and medium-mass systems and from density-constraint TDHF calculations. Extracted friction coefficients show sizable energy dependence and universal value of their magnitude, which are rather similar to those in light- and medium-mass systems. Using these properties, I analyze the origin of the fusion hindrance and find that contribution of the increase in potential to the extra-push energy is larger than that of the accumulated dissipation energy in most systems studied in this article. Conclusions: I find that the nucleus-nucleus potentials extracted in heavy systems show a specific property, which is not observed in light- and medium-mass systems. By the analysis of the origin of the fusion hindrance, I conclude that, as the system becomes heavier, the dynamical increase in nucleus-nucleus potential at small relative distances plays a more important role than the dissipation during the fusion reaction for understanding the origin of the fusion hindrance.Note:
- 15 pages, 18 figures
- 25.70.Jj
- 21.60.Jz
- 24.10.-i
References(75)
Figures(18)
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]