The Role of Electron-Phonon Scattering in Transverse Momentum Conservation in PbTe(111) Photocathodes
Jun, 2018Citations per year
0 Citations
Abstract: (JACoW)
The state of the art in creating high quality electron beams for particle accelerator applications and next generation ultrafast electron diffraction and microscopy involves laser-generated photoemission. A high quality beam requires that electrons emerge from the surface with low mean transverse energy (MTE). Recent density-functional theory calculations by T. Li and W. A. S. [arXiv:1704.00194v1 [physics.acc-ph] (2017)] suggest that PbTe(111) will produce low-MTE photoelectrons due to the low effective electron mass associated with its electronic band structure. Based on this, we measured the distribution of photoelectrons from PbTe(111) and found the MTE to be about 20x larger than expected. To explain the apparent lack of transverse momentum conservation, we carried out many-body photoemission calculations including electron-phonon scattering. Our results are in far better agreement with the experiment, underscoring the importance of electron-phonon scattering in photoemission from PbTe(111), and suggest that cooling could mitigate the phonon effects on the MTE for this material.- electron
- experiment
- scattering
- photon
- cathode
References(4)
Figures(0)
- [1]
- [2]
- [3]
- [4]