Geometry of nonadiabatic quantum hydrodynamics

Jul 3, 2018
41 pages
e-Print:
DOI:

Citations per year

201920202021202220232017
Abstract: (arXiv)
The Hamiltonian action of a Lie group on a symplectic manifold induces a momentum map generalizing Noether's conserved quantity occurring in the case of a symmetry group. Then, when a Hamiltonian function can be written in terms of this momentum map, the Hamiltonian is called `collective'. Here, we derive collective Hamiltonians for a series of models in quantum molecular dynamics for which the Lie group is the composition of smooth invertible maps and unitary transformations. In this process, different fluid descriptions emerge from different factorization schemes for either the wavefunction or the density operator. After deriving this series of quantum fluid models, we regularize their Hamiltonians for finite \hbar by introducing local spatial smoothing. In the case of standard quantum hydrodynamics, the 0\hbar\ne0 dynamics of the Lagrangian path can be derived as a finite-dimensional canonical Hamiltonian system for the evolution of singular solutions called `Bohmions', which follow Bohmian trajectories in configuration space. For molecular dynamics models, application of the smoothing process to a new factorization of the density operator leads to a finite-dimensional Hamiltonian system for the interaction of multiple (nuclear) Bohmions and a sequence of electronic quantum states.
Note:
  • 41 pages, no figures
  • [1]
    Exact factorization of the time-dependent electronnuclear wave function
    • A. Abedi
      ,
    • N.T. Maitra
      ,
    • E.K.U. Gross
      • Phys.Rev.Lett. 105 (2010) 123002
  • [2]
    Correlated electron-nuclear dynamics: Exact factorization of the molecular wavefunction
    • A. Abedi
      ,
    • N.T. Maitra
      ,
    • E.K.U. Gross
      • J.Chem.Phys. 137 (2012) 22
  • [3]

    comment on ‘correlated electronnuclear dynamics: Exact factorization of the molecular wavefunction

    • A. Abedi
      ,
    • N.T. Maitra
      ,
    • E.K.U. Gross
      • J.Chem.Phys. 139 (2013) 087101
  • [3]
    • A. Abedi
      ,
    • N.T. Maitra
      ,
    • E.K.U. Gross
      • J.Chem.Phys. 139 (2013) 087102
  • [4]
    The exact forces on classical nuclei in non-adiabatic charge transfer
    • F. Agostini
      ,
    • A. Abedi
      ,
    • Y. Suzuki
      ,
    • S.K. Min
      ,
    • N.T. Maitra
    et al.
      • J.Chem.Phys. 142 (2015) 084303
  • [5]
    Classical-quantum nonadiabatic dynamics: Coupled-vs independent-trajectory methods
    • F. Agostini
      ,
    • S.K. Min
      ,
    • A. Abedi
      ,
    • E.K.U. Gross
      • J.Chem.Theor.Comput. 12 (2016) 2127-2143
  • [6]

    Correlated electron-nuclear dynamics: Exact factorization of the molecular wavefunction

    • JL Alonso
      ,
    • P. J Clemente-Gallardo
      • J.Chem.Phys. 137 (2013) 22
  • [7]
    in Nonlinear Partial Differential Operators and Quantization Procedures, S. I. Andersson and H.-D. Doebner (eds.)
    • B. Angermann
      ,
    • H.-D. Doebner
      ,
    • J. Tolar
  • [8]
    Beyond Born-Oppenheimer: conical intersections and electronic nonadiabatic coupling terms
    • M. Baer
  • [9]
    • S. Bates
    • [9]

      Lectures on the geometry of quantization

      • A. Weinstein
    • [10]
      Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A
      • M.V. Berry
    • [11]
      • D.I. Bondar
      • [11]
        ;
        • F. Gay-Balmaz
        • [11]
          ;
          • C. Tronci
        • [12]
          Bonet
          • E. Luz
          • [12]
            ;
            • C. Tronci
              • J.Math.Phys. 56 (2015) 082104
          • [13]
            Bonet
            • E. Luz
            • [13]
              ;
              • C. Tronci
                • Proc.Roy.Soc.Lond.A A 472 (2016) 20150777
            • [14]
              Quantum Kinetic Theory
              • M. Bonitz
            • [15]

              Hidden

              • D.A Bohm
            • [16]
            • [17]
              Max Born, Kun Huang, and M Lax. Dynamical theory of crystal lattices
                • Am.J.Phys. 23 (1955) 474-474
            • [18]
              Statistical geometry in quantum mechanics
              • D.C. Brody
                ,
              • L.P. Hughston
            • [19]
              Quantum Hydrodynamics and a Moment Approach to Quantum-Classical Theory. Quantum Dynamics of Complex Molecular Systems
              • I. Burghardt
                ,
              • K.B. Møller
                ,
              • K.H. Hughes