Citations per year

202320242025024
Abstract: (arXiv)
We study dynamical gravitational collapse in a theory with an infinite tower of higher-derivative corrections to the Einstein-Hilbert action and we show that, under very general conditions, it leads to the formation of regular black holes. Our results are facilitated by the use of a class of theories that possess second-order equations on spherically symmetric metrics, but which are general enough to provide a basis for the gravitational effective action. We analytically solve the collapse of a thin shell of dust and show that it inevitably experiences a bounce at small radius and that its motion can be extended to arbitrary proper time. The collapse of the shell always gives rise to a singularity-free, geodesically complete spacetime that contains horizons if the total mass is above a critical value. In that case, the shell bounces into a new universe through a white hole explosion. Our construction provides, to the best of our knowlege, the first fully dynamical description of formation of regular black holes, and it suggests that higher-derivative corrections may be the most natural way to resolve the singularities of Einstein's theory.
Note:
  • 5 pages + appendices; 2 figures