The local hole in the galaxy distribution: New optical evidence

Feb, 2003
15 pages
Published in:
  • Mon.Not.Roy.Astron.Soc. 354 (2004) 991
e-Print:

Citations per year

200320092015202120250123456
Abstract: (arXiv)
We present a new CCD survey of galaxies within the N and S strips of the 2dFGRS areas. We use the new CCD data to check the photographic photometry scales of the 2dFGRS, APMBGC, APM-Stromlo Redshift Survey, Durham-UKST (DUKST) survey, Millenium Galaxy Catalogue (MGC) and Sloan Digital Sky Survey (SDSS). We find evidence for scale and zero-point errors in the 2dFGRS northern field, DUKST and APM data of 0.10, 0.24 and 0.31 mag. respectively: we find excellent agreement with the MGC and SDSS photometry. We find conclusive evidence that the S counts with B<17 mag are down by ~30% relative to both the N counts and to the models of Metcalfe et al. We further compare the n(z) distributions from the B<17 mag. DUKST and B<19.5 2dFGRS redshift surveys using the corrected photometry. While the N n(z) from 2dFGRS appears relatively homogeneous over its whole range, the S n(z) shows a 30% deficiency out to z=0.1: at higher redshifts it agrees much better with the N n(z) and the homogeneous model n(z). The DUKST n(z) shows that the S `hole' extends over a 20 by 75 degree squared area. The troughs with z<0.1 in the DUKST n(z) appear deeper than for the fainter 2dFGRS data. This may be evidence that the local galaxy distribution is biased on >50 h-1 Mpc scales which is unexpected in a Lambda-CDM cosmology. Finally, since the Southern local void persists over the full area of the APM and APMBGC with a ~25% deficiency in the counts below B~17, this means that its extent is ~300 h-1 Mpc by 300 h-1 Mpc on the sky as well as ~300 h-1 Mpc in the redshift direction. Such a 25% deficiency extending over ~10^7 h-3 Mpc^3 may imply that the galaxy correlation function's power-law behaviour extends to \~150 h-1 Mpc with no break and show more excess large-scale power than detecte d in the 2dFGRS correlation function or expected in the Lambda-CDM cosmology.