Do Hot Haloes Around Galaxies Contain the Missing Baryons?

Mar, 2010
12 pages
Published in:
  • Astrophys.J. 714 (2010) 320-331
e-Print:

Citations per year

200920132017202120250510152025
Abstract: (arXiv)
Galaxies are missing most of their baryons, and many models predict these baryons lie in a hot halo around galaxies. We establish observationally motivated constraints on the mass and radii of these haloes using a variety of independent arguments. First, the observed dispersion measure of pulsars in the Large Magellanic Cloud allows us to constrain the hot halo around the Milky Way: if it obeys the standard NFW profile, it must contain less than 4-5% of the missing baryons from the Galaxy. This is similar to other upper limits on the Galactic hot halo, such as the soft X-ray background and the pressure around high velocity clouds. Second, we note that the X-ray surface brightness of hot haloes with NFW profiles around large isolated galaxies is high enough that such emission should be observed, unless their haloes contain less than 10-25% of their missing baryons. Third, we place constraints on the column density of hot haloes using nondetections of OVII absorption along AGN sightlines: in general they must contain less than 70% of the missing baryons or extend to no more than 40 kpc. Flattening the density profile of galactic hot haloes weakens the surface brightness constraint so that a typical L_* galaxy may hold half its missing baryons in its halo, but the OVII constraint remains unchanged, and around the Milky Way a flattened profile may only hold 6136-13% of the missing baryons from the Galaxy (24×1010M2-4 \times 10^{10} M_{\odot}). We also show that AGN and supernovae at low to moderate redshift - the theoretical sources of winds responsible for driving out the missing baryons - do not produce the expected correlations with the baryonic Tully-Fisher relationship and so are insufficient to explain the missing baryons from galaxies. We conclude that most of missing baryons from galaxies do not lie in hot haloes around the galaxies, and that the missing baryons never fell into the potential wells of protogalaxies in the first place. They may have been expelled from the galaxies as part of the process of galaxy formation.
Note:
  • accepted for publication in the Astrophysical Journal