Topological Entanglement Entropy of Z2 Spin liquids and Lattice Laughlin states
Jun, 2011Citations per year
Abstract: (arXiv)
We study entanglement properties of candidate wave-functions for SU(2) symmetric gapped spin liquids and Laughlin states. These wave-functions are obtained by the Gutzwiller projection technique. Using Topological Entanglement Entropy \gamma\ as a tool, we establish topological order in chiral spin liquid and Z2 spin liquid wave-functions, as well as a lattice version of the Laughlin state. Our results agree very well with the field theoretic result \gamma =log D where D is the total quantum dimension of the phase. All calculations are done using a Monte Carlo technique on a 12 times 12 lattice enabling us to extract \gamma\ with small finite size effects. For a chiral spin liquid wave-function, the calculated value is within 4% of the ideal value. We also find good agreement for a lattice version of the Laughlin \nu =1/3 phase with the expected \gamma=log \sqrt{3}.- spin: liquid
- entropy: entanglement
- finite size: effect
- symmetry: SU(2)
- numerical calculations: Monte Carlo
- phase: topological
- chiral
- superconductivity
References(44)
Figures(0)