Precision few-electron silicon quantum dots

2011
Supervisor:
Thesis: PhD (2011)
  • Published: 2011
URN/HDL:

Citations per year

0 Citations
Abstract: (New South Wales U.)
We demonstrate the successful down-scaling of donor-based silicon quantum dot structures to the single donor limit. These planar devices are realized in ultra high vacuum (UHV) by means of scanning tunneling microscope (STM) based hydrogen lithography which – in combination with a gaseous dopant source and a thermal silicon source – allows for the patterning of highly-doped planar Si:P structures with sub-nm precision encapsulated in a single-crystal environment. We present advancements of the alignment strategy for patterning ex-situ metallic contacts and top gates over the buried dopant devices. Here, we use a hierarchical array of etched registration markers. A key feature of the alignment process is the controlled formation of atomically flat plateaus several hundred nanometers in diameter that allows the active region of the device to be patterned on a single atomic Si(100) plane at a precisely known position. We present a multiterminal Si:P quantum dot device in the many-electron regime. Coplanar regions of highly doped silicon are used to gate the quantum dot potential resulting in highly stable Coulomb blockade oscillations. We compare the use of these all epitaxial in-plane gates with conventional metallic surface gates and find superior stability of the former. We highlight the challenges of down-scaling within a planar architecture and show how capacitance modeling can be used to optimize the tunability of quantum dot devices. Based on these results, we demonstrate the fabrication of an in-plane gated few-donor quantum dot device which shows highly stable Coulomb blockade oscillations as well as a surprisingly dense excitation spectrum on the scale of 100 μeV. We explain how these low energy resonances arise from transport through valley-split states of the silicon quantum dot providing extensive effective mass calculations to support our findings. Finally, we describe how STM H-lithography can be used to incorporate individual impurities at precisely known positions within a gated device and demonstrate transport through a single phosphorus donor. We find a bulk-like charging energy as well as clear indications for bulk-like excited states. We highlight the potential of this technology to realize elementary building blocks for future donor-based quantum computation applications in silicon.
  • Silicon
  • Scanning tunneling microscope
  • Quantum dots
  • [1]
    Cramming more components onto integrated circuits
    • G.E. Moore
      • Electronics 38 (1965) 114-117
  • [2]
    Where do the dopants go?, Science 309(5733), 388-390
    • S. Roy
      ,
    • A. Asenov
  • [3]
    Integrated nanoelectronics for the future
    • R. Chau
      ,
    • B. Doyle
      ,
    • S. Datta
      ,
    • J. Kavalieros
      ,
    • K. Zhang
      • Nature Materials 6 (2007) 810-812
  • [4]
    : The Feynman lectures on computation, in R. W. Allen, A. J. G. Hey (eds.)
    • R.P. Feynman
  • [5]
    : Algorithms for quantum computation: discrete logarithms and factoring, in S. Goldwasser (ed.)
    • P.W. Shor
  • [6]
    : A fast quantum mechanical algorithm for database search, in 28th Annual ACM Symposium on the Theory of Computing page 212
    • L.K. Grover
  • [7]
    Architecture for a large-scale ion-trap quantum computer, Nature 417(6890), 709-711
    • D. Kielpinski
      ,
    • C. Monroe
      ,
    • D.J. Wineland
  • [8]
    A scheme for efficient quantum computation with linear optics, Nature 409(6816), 46-52
    • E. Knill
      ,
    • R. Laflamme
      ,
    • G.J. Milburn
  • [11]
    Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance, Nature 414(6866), 883-887
    • L.M.K. Vandersypen
      ,
    • M. Steffen
      ,
    • G. Breyta
      ,
    • C.S. Yannoni
      ,
    • M.H. Sherwood
    et al.
  • [12]

  • [13]
    The physical implementation of quantum computation, Fortschr. Phys. 48(9-11), 771-783
    • D.P. DiVincenzo
  • [14]
    A silicon-based nuclear spin quantum computer, Nature 393(6681), 133-137 . 175 176 BIBLIOGRAPHY
    • B.E. Kane
  • [15]
    Electron spin resonance experiments on donors in silicon. I. Electronic
    • G. Feher
      • Phys.Rev. 114 (1959) 1219-1244
  • [17]
    Charge-based quantum computing using single donors in semiconductors
    • L.C.L. Hollenberg
      ,
    • A.S. Dzurak
      ,
    • C. Wellard
      ,
    • A.R. Hamilton
      ,
    • D.J. Reilly
    et al.
      • Phys.Rev.B 69 (2004) 4
  • [18]
    Solid-state quantum memory using the 31P nuclear spin, Nature 455(7216), 1085-1088
    • J.J.L. Morton
      ,
    • A.M. Tyryshkin
      ,
    • R.M. Brown
      ,
    • S. Shankar
      ,
    • B.W. Lovett
    et al.
  • [19]
    Electronic spin storage in an electrically readable nuclear spin memory with a lifetime > 100 seconds, Science 330(6011), 1652-1656
    • D.R. McCamey
      ,
    • J. Van Tol
      ,
    • G.W. Morley
      ,
    • C. Boehme
  • [20]
    Two-dimensional architectures for donor-based quantum computing, Phys. Rev. B
    • L.C.L. Hollenberg
      ,
    • A.D. Greentree
      ,
    • A.G. Fowler
      ,
    • C.J. Wellard
  • [21]
    Exchange in silicon-based quantum computer architecture
    • B. Koiller
      ,
    • X.D. Hu
      ,
    • S. Das Sarma
      • Phys.Rev.Lett. 88 (2002) 027903
  • [22]
    Surface studies by scanning tunneling microscopy
    • G. Binnig
      ,
    • H. Rohrer
      ,
    • C. Gerber
      ,
    • E. Weibel
      • Phys.Rev.Lett. 49 (1982) 57-61
  • [23]
    Confinement of electrons to quantum corrals on a metal surface, Science 262(5131), 218-220
    • M.F. Crommie
      ,
    • C.P. Lutz
      ,
    • D.M. Eigler
  • [24]
    R. J. van der Hage, L. P
    • S. Tarucha
      ,
    • D.G. Austing
      ,
    • T. Honda
      • Phys.Rev.Lett. 77 (1996) 3613-3616
  • [25]
    : Physics of semiconductor devices
    • S.M. Sze