Lattice supersymmetry, superfields and renormalization
Jul, 2004Citations per year
Abstract:
We study Euclidean lattice formulations of non-gauge supersymmetric models with up to four supercharges in various dimensions. We formulate the conditions under which the interacting lattice theory can exactly preserve one or more nilpotent anticommuting supersymmetries. We introduce a superfield formalism, which allows the enumeration of all possible lattice supersymmetry invariants. We use it to discuss the formulation of Q-exact lattice actions and their renormalization in a general manner. In some examples, one exact supersymmetry guarantees finiteness of the continuum limit of the lattice theory. As a consequence, we show that the desired quantum continuum limit is obtained without fine tuning for these models. Finally, we discuss the implications and possible further applications of our results to the study of gauge and non-gauge models.- Field Theories in Lower Dimensions
- Sigma Models
- Lattice Quantum Field Theory
- Extended Supersymmetry
- quantum mechanics
- gauge field theory: Yang-Mills
- supersymmetry: superfield
- lattice field theory: Euclidean
- perturbation theory: higher-order
- renormalization
References(44)
Figures(0)